满分5 > 初中数学试题 >

如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分...

如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.
(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q两点之间的距离是多少cm?
(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C同时出发,问经过多长时间P、Q两点之间的距离是10cm?
(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为 12cm2
manfen5.com 满分网
(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可; (2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值; (3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时. 【解析】 (1)过点P作PE⊥CD于E.则根据题意,得 EQ=16-2×3-2×2=6(cm),PE=AD=6cm; 在Rt△PEQ中,根据勾股定理,得 PE2+EQ2=PQ2,即36+36=PQ2, ∴PQ=6cm; ∴经过2s时P、Q两点之间的距离是6cm; (2)设x秒后,点P和点Q的距离是10cm. (16-2x-3x)2+62=102,即(16-5x)2=64, ∴16-5x=±8, ∴,; ∴经过s或sP、Q两点之间的距离是10cm; (3)连接BQ.设经过ys后△PBQ的面积为12cm2. ①当时,则PB=16-3y, ∴PB•BC=12,即×(16-3y)×6=12, 解得y=4; ②当时, BP=3y-AB=3y-16,QC=2y,则 BP•CQ=(3y-16)×2y=12, 解得y1=6,(舍去);    ③时, QP=CQ-PQ=22-y,则 QP•CB=(22-y)×6=12, 解得y=18(舍去). 综上所述,经过4秒或6秒△PBQ的面积为 12cm2.
复制答案
考点分析:
相关试题推荐
庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时李强从南坡山脚B处出发.如图,已知小山北坡的坡度manfen5.com 满分网,坡面AC长240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)

manfen5.com 满分网 查看答案
已知关于x的方程(k-1)x2-6x+9=0
(1)若方程有实数根,求k的取值范围;
(2)若方程有两个不相等的实数根,求k的取值范围;
(3)若方程有两个相等的实数根,求k的值,并求此时方程的根. 查看答案
某工厂生产的某种产品按质量分为10个档次,第一档次(最低档次)的产品一天可生产80件,每件产品的利润为10元,每提高一个档次,每件产品的利润增加2元.
(1)当每件产品的利润为16元时,此产品质量在第几档次?
(2)由于生产工序不同,此产品每提高一个档次,一天的产量减少4件.若生产某档次产品一天的总利润为1200元,问该工厂生产的是第几档次的产品?
查看答案
若0是关于x的方程(m-2)x2+3x+m2+2m-8=0的解,求实数m的值,并讨论此方程解的情况.
查看答案
如图,在一次数学课外实践活动中,要求测教学楼的高度AB、小刚在D处用高1.5m的测角仪CD,测得教学楼顶端A的仰角为30°,然后向教学楼前进40m到达E,又测得教学楼顶端A的仰角为60°.求这幢教学楼的高度AB.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.