如图,在平面直角坐标系xOy中,已知点A(-2,0),点B在x轴的正半轴上,点M在y轴的负半轴上,且|AB|=6,cos∠OBM=
,点C是M关于x轴的对称点.
(1)求过A、B、C三点的抛物线的函数表达式及其顶点D的坐标;
(2)设直线CD交x轴于点E,在线段OB的垂直平分线上求一点P,使点P到直线CD的距离等于点P到原点的O距离;
(3)在直线CD上方(1)中的抛物线(不包括C、D)上是否存在点N,使四边形NCOD的面积最大?若存在,求出点N的坐标及该四边形面积的最大值;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,点E、F分别是腰AD、BC上的动点,点G在AB上,且四边形AEFG是矩形.设FG=x,矩形AEFG的面积为y.
(1)求y与x之间的函数关式,并写出自变量x的取值范围;
(2)在腰BC上求一点F,使梯形ABCD的面积是矩形AEFG的面积的2倍,并求出此时BF的长;
(3)当∠ABC=60°时,矩形AEFG能否为正方形?若能,求出其边长;若不能,请说明理由.
查看答案
某商场的一种台灯进价为每个30元,现在的售价为每个40 元,每个月可卖出550个,市场调查表明:若这种台灯的售价每涨1元,则每月的销售量将减少10 个.设每个台灯涨价x元(x为非负整数),每月的销售量为y个.
(1)求y与x之间的函数关式,并写出自变量x的取值范围;
(2)商场如何定价才能使每月台灯的销售利润最大且销售量较大?并求出这个最大利润.
查看答案
如图,在等腰三角形ABC中,∠ABC=120°,点P是底边AC上一个动点,M、N分别是AB、BC的中点,若PM+PN的最小值为4,则△ABC的周长是
.
查看答案
若抛物线y=x
2+bx+8的顶点在x轴上,且其对称轴在y轴的右侧,则b的值是
.
查看答案
如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是
.(结果保留根号)
查看答案