满分5 > 初中数学试题 >

某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次...

某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).
(1)如果他要打破记录,第7次射击不能少于多少环?
(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?
(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?
(1)可根据前6次的52环+第7,8,9,10次射击的环数和>89,因为每次环数最多是10环,因此第8,9,10次每次最多10环,根据不等式和这些条件可得出第7次射击的环数的范围. (2)不等式关系是:52+8+第8,9,10次射击的环数和>89,根据每次的环数都在1-10之间,看看8,9,10次有几个10环. (3)方法同(2)只不过第7次改成了10环. 【解析】 设第7,8,9,10次射击分别为x7,x8,x9,x10环. (1)根据题意,得52+x7+30>89, ∴x7>7. ∴如果他要打破纪录,第7次射击不能少于8环. (2)根据题意得52+8+x8+x9+x10>89, x8+x9+x10>29, 又x8,x9,x10只取1~10中的正整数, ∴x8=x9=x10=10. 即:要有3次命中10环才能打破纪录. (3)根据题意得52+10+x8+x9+x10>89 x8+x9+x10>27, 又x8,x9,x10只取1~10中的正整数, ∴x8,x9,x10中至少有一个为10, 即:最后三次射击中必须至少有一次命中10环才可能打破纪录.
复制答案
考点分析:
相关试题推荐
近期,海峡两岸关系的气氛大为改善.大陆相关部门于2005年8月1日起对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:
每千克售价(元)3837363520
每天销量(千克)5052545686
设当单价从38元/千克下调了x元时,销售量为y千克;
(1)写出y与x间的函数关系式;
(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,问这天的销售利润是多少?
(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/千克,问一次进货最多只能是多少千克?
查看答案
如图每个正方形是由边长为1的小正方形组成.
manfen5.com 满分网
(1)观察图形,请填与下列表格:
正方形边长1357n(奇数)
红色小正方形个数
正方形边长2468n(偶数)
红色小正方形个数
(2)在边长为n(n≥1)的正方形中,设红色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.
查看答案
将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.
(1)随机地抽取一张,求P(偶数);
(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数恰好为“68”的概率是多少?
查看答案
某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了多少名学生?
(2)“其它”在扇形图中所占的圆心角是多少度?
(3)补全频数分布折线图.
manfen5.com 满分网
查看答案
如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.将△ABC向下平移6个单位,得到△A'B'C',再把△A'B'C'以点O为中心放大两倍,得到△A''B''C',请你画出△A'B'C'和△A''B''C'(不要求写画法).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.