满分5 > 初中数学试题 >

如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的...

如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.
(1)延长MP交CN于点E(如图2).
①求证:△BPM≌△CPE;
②求证:PM=PN;
(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.
manfen5.com 满分网manfen5.com 满分网
(1)①根据平行线的性质证得∠MBP=∠ECP再根据BP=CP,∠BPM=∠CPE即可得到; ②由△BPM≌△CPE,得到PM=PE则PM=ME,而在Rt△MNE中,PN=ME,即可得到PM=PN. (2)证明方法与②相同. (3)四边形MBCN是矩形,则PM=PN成立. (1)证明:①如图2: ∵BM⊥直线a于点M,CN⊥直线a于点N, ∴∠BMA=∠CNM=90°, ∴BM∥CN, ∴∠MBP=∠ECP, 又∵P为BC边中点, ∴BP=CP, 又∵∠BPM=∠CPE, ∴△BPM≌△CPE,(3分) ②∵△BPM≌△CPE, ∴PM=PE∴PM=ME, ∴在Rt△MNE中,PN=ME, ∴PM=PN.(5分) (2)【解析】 成立,如图3. 证明:延长MP与NC的延长线相交于点E, ∵BM⊥直线a于点M,CN⊥直线a于点N, ∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°, ∴BM∥CN∴∠MBP=∠ECP,(7分) 又∵P为BC中点, ∴BP=CP, 又∵∠BPM=∠CPE, 在△BPM和△CPE中, , ∴△BPM≌△CPE, ∴PM=PE, ∴PM=ME, 则Rt△MNE中,PN=ME, ∴PM=PN.(10分) (3)【解析】 如图4, 四边形M′BCN′是矩形, 根据矩形的性质和P为BC边中点,得到△M′BP≌△N′CP,(11分) 得PM′=PN′成立.即“四边形MBCN是矩形,则PM=PN成立”.(12分)
复制答案
考点分析:
相关试题推荐
某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?
查看答案
如图,已知一次函数y1=x+m(m为常数)的图象与反比例函数manfen5.com 满分网(k为常数,k≠0)的图象相交点A(1,3).
(1)求这两个函数的解析式及其图象的另一交点B的坐标;
(2)观察图象,写出使函数值y1≥y2的自变量x的取值范围.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程mx2=2(1-m)x-m的两实数根为x1,x2
(1)求m的取值范围;
(2)若m>0,设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
查看答案
已知manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
(1)解方程:7x(x-3)=4(3-x)  (2)计算manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.