满分5 > 初中数学试题 >

如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA...

如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.
(1)求b,c的值;
(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;
(3)在(2)的条件下:
①求以点E、B、F、D为顶点的四边形的面积;
②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.

manfen5.com 满分网
(1)由∠ACB=90°,AC=BC,OA=1,OC=4,可得A(-1,0)B(4,5),然后利用待定系数法即可求得b,c的值; (2)由直线AB经过点A(-1,0),B(4,5),即可求得直线AB的解析式,又由二次函数y=x2-2x-3,设点E(t,t+1),则可得点F的坐标,则可求得EF的最大值,求得点E的坐标; (3)①顺次连接点E、B、F、D得四边形EBFD,可求出点F的坐标(,),点D的坐标为(1,-4)由S四边形EBFD=S△BEF+S△DEF即可求得; ②过点E作a⊥EF交抛物线于点P,设点P(m,m2-2m-3),可得m2-2m-3=,即可求得点P的坐标,又由过点F作b⊥EF交抛物线于P3,设P3(n,n2-2n-3),可得n2-2n-2=-,求得点P的坐标,则可得使△EFP是以EF为直角边的直角三角形的P的坐标. 【解析】 (1)由已知得:A(-1,0),B(4,5), ∵二次函数y=x2+bx+c的图象经过点A(-1,0),B(4,5), ∴, 解得:b=-2,c=-3; (2)如图:∵直线AB经过点A(-1,0),B(4,5), ∴直线AB的解析式为:y=x+1, ∵二次函数y=x2-2x-3, ∴设点E(t,t+1),则F(t,t2-2t-3), ∴EF=(t+1)-(t2-2t-3)=-(t-)2+, ∴当t=时,EF的最大值为, ∴点E的坐标为(,); (3)①如图:顺次连接点E、B、F、D得四边形EBFD. 可求出点F的坐标(,),点D的坐标为(1,-4) S四边形EBFD=S△BEF+S△DEF=××(4-)+××(-1)=; ②如图: ⅰ)过点E作a⊥EF交抛物线于点P,设点P(m,m2-2m-3) 则有:m2-2m-3=, 解得:m1=1+,m2=1-, ∴P1(1-,),P2(1+,), ⅱ)过点F作b⊥EF交抛物线于P3,设P3(n,n2-2n-3) 则有:n2-2n-3=-, 解得:n1=,n2=(与点F重合,舍去), ∴P3(,-), 综上所述:所有点P的坐标:P1(1+,),P2(1-,),P3(,-)能使△EFP组成以EF为直角边的直角三角形.
复制答案
考点分析:
相关试题推荐
某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.
(1)写出销售量y件与销售单价x元之间的函数关系式;
(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;
(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?
查看答案
如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点.
(1)求该抛物线的解析式及对称轴;
(2)当x为何值时,y>0?
(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.

manfen5.com 满分网 查看答案
如图所示,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.
(1)如果⊙O的半径为4,manfen5.com 满分网,求∠BAC的度数;
(2)若点E为manfen5.com 满分网的中点,连接OE,CE.求证:CE平分∠OCD;
(3)在(1)的条件下,圆周上到直线AC距离为3的点有多少个?并说明理由.

manfen5.com 满分网 查看答案
如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时问x成反比例函数关系.
(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);
(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?

manfen5.com 满分网 查看答案
如图,过y轴上点A的一次函数与反比例函数相交于B、D两点,B(-2,3),BC⊥x轴于C,四边形OABC面积为4.
(1)求反比例函数和一次函数的解析式;
(2)求点D的坐标;
(3)当x在什么取值范围内,一次函数的值大于反比例函数的值.(直接写出结果)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.