满分5 > 初中数学试题 >

如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,...

如图,△OAB是边长为2+manfen5.com 满分网的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-manfen5.com 满分网x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;
(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.

manfen5.com 满分网
(1)当A′E∥x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=2+,由此可求出OA′的长,也就能求出A′E的长.据此可求出A′和E的坐标; (2)将A′,E点的坐标代入抛物线中,即可求出其解析式.进而可求出抛物线与x轴的交点坐标; (3)根据折叠的性质可知:∠FA′E=∠A,因此∠FA′E不可能为直角,因此要使△A′EF成为直角三角形只有两种可能: ①∠A′EF=90°,根据折叠的性质,∠A′EF=∠AEF=90°,此时A′与O重合,与题意不符,因此此种情况不成立. ②∠A′FE=90°,同①,可得出此种情况也不成立. 因此A′不与O、B重合的情况下,△A′EF不可能成为直角三角形. 【解析】 (1)由已知可得∠A′OE=60°,A′E=AE, 由A′E∥x轴,得△OA′E是直角三角形, 设A′的坐标为(0,b), AE=A′E=b,OE=2b,b+2b=2+, 所以b=1,A′、E的坐标分别是(0,1)与(,1). (2)因为A′、E在抛物线上, 所以, 所以, 函数关系式为y=-x2+x+1, 由-x2+x+1=0, 得x1=-,x2=2, 与x轴的两个交点坐标分别是(,0)与(,0). (3)不可能使△A′EF成为直角三角形. ∵∠FA′E=∠FAE=60°, 若△A′EF成为直角三角形,只能是∠A′EF=90°或∠A′FE=90° 若∠A′EF=90°,利用对称性,则∠AEF=90°, A、E、A三点共线,O与A重合,与已知矛盾; 同理若∠A′FE=90°也不可能, 所以不能使△A′EF成为直角三角形.
复制答案
考点分析:
相关试题推荐
如图①,△ABC内接于⊙O,且∠ABC=∠C,点D在弧BC上运动.过点D作DE∥BC,DE交直线AB于点E,连接BD.
(1)求证:∠ADB=∠E;
(2)求证:AD2=AC•AE;
(3)当点D运动到什么位置时,△DBE∽△ADE.请你利用图②进行探索和证明.

manfen5.com 满分网 查看答案
在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式:
①AB=DC;②∠ABE=∠DCE;③AE=DE;④∠A=∠D
小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:
(1)当抽得①和②时,用①,②作为条件能判定△BEC是等腰三角形吗?说说你的理由;
(2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使△BEC不能构成等腰三角形的概率.

manfen5.com 满分网 查看答案
如图,一枚运载火箭从地面O处发射,当火箭到达A点时,从地面C处的雷达站测得AC的距离是6km,仰角是43度.1s后,火箭到达B点,此时测得BC的距离是6.13km,仰角为45.54°,解答下列问题:
(1)火箭到达B点时距离发射点有多远?(精确到0.01km)
(2)火箭从A点到B点的平均速度是多少?(精确到0.1km/s)

manfen5.com 满分网 查看答案
如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处.
(1)求EF的长;
(2)求梯形ABCE的面积.

manfen5.com 满分网 查看答案
如图,一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象交于A(-2,1),B(1,n)两点.
(1)试确定上述反比例函数和一次函数的表达式;
(2)求△AOB的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.