满分5 > 初中数学试题 >

如图,等腰梯形ABCD的底边AD在x轴上,顶点C在y轴正半轴上,B(4,2),一...

如图,等腰梯形ABCD的底边AD在x轴上,顶点C在y轴正半轴上,B(4,2),一次函数y=kx-1的图象平分它的面积,关于x的函数y=mx2-(3m+k)x+2m+k的图象与坐标轴只有两个交点,求m的值.

manfen5.com 满分网
过B作BE⊥AD于E,连接OB、CE交于点P,根据矩形OCBE的性质求出B、P坐标,然后再根据相似三角形的性质求出k的值,将解析式y=mx2-(3m+k)x+2m+k中的k化为具体数字,再分m=0和m≠0两种情况讨论,得出m的值. 【解析】 过B作BE⊥AD于E,连接OB、CE交于点P, ∵P为矩形OCBE的对称中心,则过点P的直线平分矩形OCBE的面积. ∵P为OB的中点,而B(4,2), P点坐标为(2,1), 在Rt△ODC与Rt△EAB中,OC=BE,AB=CD, Rt△ODC≌Rt△EAB(HL),Rt△ODC≌Rt△EBA, ∵P点坐标为(2,1),点P在直线y=kx-1上, ∴2k-1=1,k=1, 过点(0,-1)与P(2,1)的直线平分等腰梯形面积,这条直线为y=kx-1. 2k-1=1,则k=1. ∵关于x的函数y=mx2-(3m+1)x+2m+1的图象与坐标轴只有两个交点, ∴①当m=0时,y=-x+1,其图象与坐标轴有两个交点(0,1),(1,0); ②当m≠0时,函数y=mx2-(3m+1)x+2m+1的图象为抛物线,且与y轴总有一个交点(0,2m+1), 若抛物线过原点时,2m+1=0, 即m=-,此时,△=(3m+1)2-4m(2m+1)=(m+1)2≥0, 故抛物线与x轴有两个交点且过原点,符合题意. 若抛物线不过原点,且与x轴只有一个交点,也符合题意,此时△=(m+1)2=0,m=-1. 综上所述,m的值为:m=0或-1或-.
复制答案
考点分析:
相关试题推荐
用两个全等的正方形ABCD和CDFE拼成一个矩形ABEF,把一个足够大的直角三角尺的直角顶点与这个矩形的边AF的中点D重合,且将直角三角尺绕点D按逆时针方向旋转.
(1)当直角三角尺的两直角边分别与矩形ABEF的两边BE,EF相交于点G,H时,如图甲,通过观察或测量BG与EH的长度,你能得到什么结论并证明你的结论;
(2)当直角三角尺的两直角边分别与BE的延长线,EF的延长线相交于点G,H时(如图乙),你在图甲中得到的结论还成立吗?简要说明理由.
manfen5.com 满分网
查看答案
先化简,再求值:manfen5.com 满分网,其中x=manfen5.com 满分网+1.
查看答案
解方程:manfen5.com 满分网
查看答案
计算:manfen5.com 满分网
查看答案
若关于x一元二次方程manfen5.com 满分网有两个实数根,则m的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.