满分5 > 初中数学试题 >

如图,已知AOCE,两个动点B同时在D的边上按逆时针方向A运动,开始时点F在点F...

如图,已知AOCE,两个动点B同时在D的边上按逆时针方向A运动,开始时点F在点FA位置、点Q在点O位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.
(1)在前3秒内,求△OPQ的最大面积;
(2)在前10秒内,求x两点之间的最小距离,并求此时点P,Q的坐标.

manfen5.com 满分网
(1)由于A(8,0),B(0,6),得出OB=6,OA=8,AB=10.根据在前3秒内,点P在OB上,点Q在OA上,设经过t秒,利用△OPQ的面积A=OP•OQ求出即可; (2)根据在前10秒内,点P从B开始,经过点O,点A,最后到达AB上,经过的总路程为20;点Q从O开始,经过点A,最后也到达AB上,经过的总路程为10.其中P,Q两点在某一位置重合,最小距离为0.设在某一位置重合,最小距离为0.设经过t秒,点Q被点P“追及”(两点重合),得出在前10秒内,P,Q两点的最小距离为0,点P,Q的相应坐标. 【解析】 (1)A(8,0),B(0,6), ∴OB=6,OA=8,AB=10. 在前3秒内,点P在OB 上,点Q 在OA 上, 设经过t秒,点P,Q位置如图. 则OP=6-2t,OQ=t. △OPQ的面积=OP•OQ=t(3-t), 当t=时,Smax=. (2)在前10秒内,点P 从B 开始,经过点O,点A,最后到达AB 上,经过的总路程为20; 点Q 从O 开始,经点A,最后也到达AB上,经过的总路程为10, 其中P,Q两点在某一位置重合,最小距离为0. 设在某一位置重合,最小距离为0. 设经过t秒,点Q被P点“追及”(两点重合), 则2t=t+6, ∴t=6,在前10秒内,P,Q两点的最小距离为0,点P,Q的相应坐标都为(6,0).
复制答案
考点分析:
相关试题推荐
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
查看答案
如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,24m的中点为原点建立坐标系.
①求此桥拱线所在抛物线的解析式;
②桥边有一浮在水面部分高4m,最宽处12manfen5.com 满分网m的河鱼餐船,试探索此船能否开到桥下?说明理由.
manfen5.com 满分网manfen5.com 满分网
查看答案
二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.
(1)求C的坐标;
(2)求二次函数的解析式,并求出函数最大值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,一次函数y=kx+b的图象与反比例函数y=manfen5.com 满分网的图象相交于A、B两点.
(1)根据图象,分别写出A、B的坐标;
(2)求出两函数解析式;
(3)根据图象回答:当x为何值时,一次函数的函数值>反比例函数的函数值.
查看答案
某种爆竹点燃后,其上升高度h(米)和时间t(秒)符合关系式h=vt+manfen5.com 满分网gt2(0<t≤2),其中重力加速度g以10米/秒2计算.这种爆竹点燃后以v=20米/秒的初速度上升.(上升过程中,重力加速度g为-10米/秒2;下降过程中,重力加速度g为10米/秒2
(1)这种爆竹在地面上点燃后,经过多少时间离地15米?
(2)在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.