如图1,直线
与抛物线
交于A、B两点(A在B的左侧),与y轴交于点C.
(1)求线段AB的长;
(2)若以AB为直径的圆与直线x=m有公共点,求m的取值范围;
(3)如图2,把抛物线向右平移2个单位,再向上平移n个单位(n>0),抛物线与x轴交于P、Q两点,过C、P、Q三点的圆的面积是否存在最小值?若存在,请求出这个最小值和此时n的值;若不存在,请说明理由.
考点分析:
相关试题推荐
在直角坐标平面内,点O为坐标原点,二次函数y=x
2+(k-5)x-(k+4)的图象交x轴于点A(x
1,0)、B(x
2,0),且(x
1+1)(x
2+1)=-8.
(1)求二次函数解析式;
(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.
查看答案
已知:如图,直径为OA的⊙M与x轴交于点O、A,点B、C把
分为三等份,连接MC并延长交y轴于点D(0,3)
(1)求证:△OMD≌△BAO;
(2)若直线l:y=kx+b把⊙M的面积分为二等份,求证:
k+b=0.
查看答案
如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.
(1)求证:AC=BD;
(2)若图中阴影部分的面积是
πcm
2,OA=2cm,求OC的长.
查看答案
我市为了纪念龙州起义80周年,对红八军纪念广场进行了改造,改造后安装了八个大理石球.小明想知道其中一个球的半径,于是找了两块厚10cm的砖塞在球的两侧(如图),并量得两砖之间的距离是60cm.请你在图中利用所学的几何知识,求出大理石球的半径(要写出计算过程).
查看答案
如图,已知点A(-4,2)、B( n,-4)是一次函数y=kx+b的图象与反比例函数
图象的两个交点:
(1)求点B的坐标和一次函数的解析式;
(2)求△AOB的面积;
(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.
查看答案