满分5 > 初中数学试题 >

已知一元二次方程ax2+bx+c=0中二次项系数,一次项系数和常数项之和为0,那...

已知一元二次方程ax2+bx+c=0中二次项系数,一次项系数和常数项之和为0,那么方程必有一根为( )
A.0
B.1
C.-1
D.±1
一元二次方程ax2+bx+c=0中二次项系数,一次项系数和常数项之和为0,即a+b+c=0,根据方程解的定义,当x=1时,方程即可变形成a+b+c=0,即可确定方程的解. 【解析】 根据题意:当x=1时,方程左边=a+b+c 而a+b+c=0,即当x=1时,方程ax2+bx+c=0成立. 故x=1是方程的一个根. 故选B.
复制答案
考点分析:
相关试题推荐
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图案中,不能由一个图形通过旋转而构成的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
下列计算正确的是( )
A.manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网
B.manfen5.com 满分网+manfen5.com 满分网=manfen5.com 满分网
C.manfen5.com 满分网=3manfen5.com 满分网
D.manfen5.com 满分网÷manfen5.com 满分网=2
查看答案
如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8).
(1)求抛物线C1关于原点对称的抛物线C2的解析式;
(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;
(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.

manfen5.com 满分网 查看答案
如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.
(1)请直接写出PN的长;(用含x的代数式表示)
(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.
(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.
manfen5.com 满分网
查看答案
某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=-manfen5.com 满分网+c且过顶点C(0,5)(长度单位:m)
(1)直接写出c的值;
(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?
(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.