满分5 > 初中数学试题 >

如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(...

如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.
(1)P点的坐标为多少(用含x的代数式表示);
(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;
(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.

manfen5.com 满分网
(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求; ②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB-PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标. (2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC-BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式. (3)本题要分类讨论: ①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值; ②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN-CQ求出QN的表达式,根据题设的等量条件即可得出x的值. ③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN的长,联立CN的表达式即可求出x的值. 【解析】 (1)过点P作PQ⊥BC于点Q, 有题意可得:PQ∥AB, ∴△CQP∽△CBA, ∴=, ∴=, 解得:QP=x, ∴PM=3-x, 由题意可知,C(0,3),M(x,0),N(4-x,3), P点坐标为(x,3-x). (2)设△NPC的面积为S,在△NPC中,NC=4-x, NC边上的高为,其中,0≤x≤4. ∴S=(4-x)×x=(-x2+4x) =-(x-2)2+. ∴S的最大值为,此时x=2. (3)延长MP交CB于Q,则有PQ⊥BC. ①若NP=CP, ∵PQ⊥BC, ∴NQ=CQ=x. ∴3x=4, ∴x=. ②若CP=CN,则CN=4-x,PQ=x,CP=x,4-x=x, ∴x=; ③若CN=NP,则CN=4-x. ∵PQ=x,NQ=4-2x, ∵在Rt△PNQ中,PN2=NQ2+PQ2, ∴(4-x)2=(4-2x)2+(x)2, ∴x=. 综上所述,x=,或x=,或x=.
复制答案
考点分析:
相关试题推荐
如图,已知一次函数y1=kx+b的图象与反比例函数manfen5.com 满分网的图象交于A(2,4)和B(-4,m)两点.
(1)求这两个函数的解析式;
(2)求△AOB的面积;
(3)根据图象直接写出,当y1>y2时,x的取值范围.

manfen5.com 满分网 查看答案
将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是偶数的概率是______
(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是______
(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.

manfen5.com 满分网 查看答案
枇杷是莆田名果之一,某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克?
查看答案
(建筑施工高处作业安全技术规范)(JGJ80-91)规定,折梯(即人字梯)使用时上部夹角以35°-45°为宜,铰链必须牢固,并应有可靠的拉撑措施.如下图所示,小明想在人字梯的A、B处系上一根绳子确保用梯安全,他测得OA=OB=3米,在A、B处打结各需要0.5米的绳子,请你帮小明计算一下,他需要的绳子应该在什么范围内?
(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70,sin45°=0.71,cos45°=0.71,tan45°=1)
(sin17.5°=0.30,cos17.5°=0.95,tan17.5°=0.32,sin22.5°=0.38,cos22.5°=0.92,tan22.5°=0.41)

manfen5.com 满分网 查看答案
如图,小明家楼房旁立了一根长4米的竹竿,小明在测量竹竿的影子时,发现影子不全落在地面上,有一部分落在楼房的墙壁上,小明测出它落在地面上的影子长为2米,落在墙壁上的影子长为1米,此时,小明想把竹竿移动位置,使其影子刚好不落在墙上.试问,小明应把竹竿移到什么位置?(要求竹竿移动的距离尽可能小)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.