满分5 > 初中数学试题 >

如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一...

如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为______,数量关系为______
②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)
(3)若AC=2manfen5.com 满分网,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
manfen5.com 满分网
(1)可通过证明三角形ABC和三角形ACF全等来实现.因为AD=AF,AB=AC,只要证明∠BAD=∠CAF即可,∠BAD=90°-∠DAC=∠FAC,这样就构成了全等三角形判定中的SAS,△ABD≌△ACF,因此BC=CF,∠B=∠ACF,因为∠B+∠ACB=90°,那么∠ACF+ACD=90°,即FC⊥BC,也就是FC⊥BD. (2)可通过构建三角形来求解.过点A作AG⊥AC交BC于点G,如果CF⊥BD,那么∠ACF=∠AGD=90°-∠ACD,又因为∠GAD=∠CAE=90°-∠CAD.AG=AC那么根据AAS可得出△AGD≌△ACF,AG=AC,又因为∠GAC=90°,可得出∠BCA=45°. 因此△BAC满足∠BCA=45°时,CF⊥BD. (3)过点A作AQ⊥BC交BC的延长线于点Q,通过构建与线段相关的三角形相似来求解. 图中我们可以看出∠ADQ+∠PDC=90°,那么很容易就能得出,∠QAD=∠PDC,那么就能得出直角三角形ADQ∽直角三角形PDC,那么可得出关于CP、CD、AQ、QD的比例关系,因为∠BCA=45°,∠Q=90°,那么AQ=QC=2,如果设CD=x,那么可用x表示出CD、QD,又知道AQ的值和CP、CD、QD、AQ的比例关系,那么可得出关于CP和x的函数关系式,然后根据函数的性质和x的取值范围求出CP的最大值. 【解析】 (1)①CF与BD位置关系是垂直,数量关系是相等 ②当点D在BC的延长线上时①的结论仍成立 由正方形ADEF得AD=AF,∠DAF=90度 ∵∠BAC=90°, ∴∠DAF=∠BAC, ∴∠DAB=∠FAC 又∵AB=AC, ∴△DAB≌△FAC, ∴CF=BD ∠ACF=∠ABD ∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45° ∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD. (2)当∠BCA=45°时,CF⊥BD(如图) 理由是:过点A作AG⊥AC交BC于点G,∴AC=AG 可证:△GAD≌△CAF∴∠ACF=∠AGD=45° ∠BCF=∠ACB+∠ACF=90°, 即CF⊥BD. (3)当具备∠BCA=45°时, 过点A作AQ⊥BC交CB的延长线于点Q,(如图), ∵DE与CF交于点P时,此时点D位于线段CQ上, ∵∠BCA=45°,AC=2, ∴由勾股定理可求得AQ=CQ=2. 设CD=x,∴DQ=2-x, ∵∠ADB+∠ADE+∠PDC=180° 且∠ADE=90°, ∴∠ADQ+∠PDC=90°, 又∵在直角△PCD中,∠PDC+∠DPC=90° ∴∠ADQ=∠DPC, ∵∠AQD=∠DCP=90° ∴△AQD∽△DCP, ∴=,∴. ∴CP=x2+x=(x-1)2+. ∵0<x≤, ∴当x=1时,CP有最大值.
复制答案
考点分析:
相关试题推荐
某仓库有甲、乙、丙三辆运货车,每辆车只负责进货或出货,丙车每小时的运输量最多,乙车每小时的运输量最少,乙车每小时运6吨,下图是甲、乙、丙三辆运输车开始工作后,仓库的库存量y(吨)与工作时间x(小时)之间的函数图象,其中OA段只有甲、丙两车参与运输,AB段只有乙、丙两车参与运输,BC段只有甲、乙两车参与运输.
(1)甲、乙、丙三辆车中,谁是进货车?
(2)甲车和丙车每小时各运输多少吨?
(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨.

manfen5.com 满分网 查看答案
如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.
(1)求证:AT平分∠BAC;
(2)若AD=2,TC=manfen5.com 满分网,求⊙O的半径.

manfen5.com 满分网 查看答案
图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;
(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.

manfen5.com 满分网 查看答案
如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G.
(1)直线FC与⊙O有何位置关系?并说明理由;
(2)若OB=BG=2,求CD的长.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,BC⊥AB,AD=3,BC=4,E点在AB上,且AE=2,∠CED=90°.
求CD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.