满分5 > 初中数学试题 >

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF...

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2)
manfen5.com 满分网
(1)问:始终与△AGC相似的三角形有____________
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);
(3)问:当x为何值时,△AGH是等腰三角形.
(1)根据△ABC与△EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理即可得出结论. (2)由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:9:y=x:9即可. (3)此题要采用分类讨论的思想,当CG<BC时,当CG=BC时,当CG>BC时分别得出即可. 【解析】 (1)∵△ABC与△EFD为等腰直角三角形,AC与DE重合, ∵∠H+∠HAC=45°,∠HAC+∠CAG=45°, ∴∠H=∠CAG, ∵∠ACG=∠B=45°, ∴△AGC∽△HAB, ∴同理可得出:始终与△AGC相似的三角形有△HAB和△HGA; 故答案为:△HAB和△HGA. (2)∵△AGC∽△HAB, ∴AC:HB=GC:AB,即9:y=x:9, ∴y=(0<x<9), ∵AB=AC=9,∠BAC=90°, ∴BC===9. 答:y关于x的函数关系式为y=(0<x<9). (3)①当CG<BC时,∠GAC=∠H<∠HAG, ∴AG<GH, ∵GH<AH, ∴AG<CH<GH, 又∵AH>AG,AH>GH, 此时,△AGH不可能是等腰三角形, ②当CG=BC时,G为BC的中点,H与C重合,△AGH是等腰三角形, 此时,GC=,即x=, ③当CG>BC时,由(1)△AGC∽△HGA, 所以,若△AGH必是等腰三角形,只可能存在GH=AH, 若GH=AH,则AC=CG,此时x=9, 如图(3),当CG=BC时, 注意:DF才旋转到与BC垂直的位置, 此时B,E,G重合,∠AGH=∠GAH=45°, 所以△AGH为等腰三角形,所以CG=9. 综上所述,当x=9或x=或9时,△AGH是等腰三角形.
复制答案
考点分析:
相关试题推荐
某社区拟筹资金2000元,计划在一块上、下底分别是10米、20米的梯形空地上种植花木(如图所示),他们想在△AMD和△BMC地带种植单价为10元/米2的太阳花,当△AMD地带种满花后,已经花了500元,请你预算一下,若继续在△BMC地带种植同样的太阳花,资金是否够用?并说明理由.

manfen5.com 满分网 查看答案
张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).
(1)求y与x之间的函数关系式;
(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?

manfen5.com 满分网 查看答案
如图,已知点A、B、C、D均在已知圆上,AD∥BC,BD平分∠ABC,∠BAD=120°,四边形ABCD的周长为15.
(1)求此圆的半径;
(2)求图中阴影部分的面积.

manfen5.com 满分网 查看答案
如图,正比例函数y1=k1x与反比例函数y2=manfen5.com 满分网 相交于A、B点.已知点A的坐标为A(4,n),BD⊥x轴于点D,且S△BDO=4.过点A的一次函数y3=k3x+b与反比例函数的图象交于另一点C,与x轴交于点E(5,0).
(1)求正比例函数y1、反比例函数y2和一次函数y3的解析式;
(2)结合图象,求出当k3x+b>manfen5.com 满分网>k1x时x的取值范围.

manfen5.com 满分网 查看答案
已知manfen5.com 满分网,求m的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.