满分5 > 初中数学试题 >

如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC...

如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC于E点,连接BE.
(1)若BE是△DEC的外接圆⊙O的切线,求∠C的大小;
(2)当AB=1,BC=2时,求△DEC外接圆的半径.

manfen5.com 满分网
(1)由于DE垂直平分AC,可得两个条件:①DE⊥AC,②E是AC的中点;由①得:∠DEC是直角,则DC是⊙O的直径,若连接OE,则OE⊥BE,且∠BOE=2∠C;欲求∠C的度数,只需求出∠EBO、∠C的比例关系即可;由②知:在Rt△ABC中,E是斜边AC的中点,则BE=EC,即∠EBO=∠C,因此在Rt△EBO中,∠EBO和∠EOB互余,即3∠C=90°,由此得解. (2)根据AB、BC的长,利用勾股定理可求出斜边AC的长,由(1)知:E是AC的中点,即可得到EC的值;易证得△DEC∽△ABC,根据所得比例线段,即可求得直径CD的长,由此得解. 【解析】 (1)∵DE垂直平分AC, ∴∠DEC=90°, ∴DC为△DEC外接圆的直径, ∴DC的中点O即为圆心; 连接OE,又知BE是圆O的切线, ∴∠EBO+∠BOE=90°; 在Rt△ABC中,E是斜边AC的中点, ∴BE=EC, ∴∠EBC=∠C; 又∵OE=OC, ∴∠BOE=2∠C,∠EBC+∠BOE=90°, ∴∠C+2∠C=90°, ∴∠C=30°. (2)在Rt△ABC中,AC=, ∴EC=AC=, ∵∠ABC=∠DEC=90°,∠C=∠C, ∴△ABC∽△DEC, ∴, ∴DC=, ∴△DEC外接圆半径为.
复制答案
考点分析:
相关试题推荐
随着余慈统筹发展战略深入实施,余姚进入高铁时代,目前,备受关注的杭甬高铁余姚段建设工程正紧张施工.为了缓解一些施工路段交通拥挤的现状,交警队设立了交通路况显示牌(如图).已知立杆AB高度是3cm,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌BC的高度.

manfen5.com 满分网 查看答案
如图,有一直径是1米的圆形铁皮,要从中剪出一个圆心角是120°的扇形ABC,
求:(1)被剪掉阴影部分的面积.
(2)若用所留的扇形铁皮围成一个圆锥,该圆锥底面圆的半径是多少?

manfen5.com 满分网 查看答案
设△ABC中BC边的长为x厘米,BC边上的高AD为y厘米,△ABC的面积是常数,已知y关于x的函数图象过点(3,4).
(1)y关于x的函数解析式和△ABC的面积;
(2)利用函数图象,求2<x<8时y的取值范围.
查看答案
如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.
(1)判断△ABC和△DEF是否相似,并说明理由;
(2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由)

manfen5.com 满分网 查看答案
计算:(-2)2+tan45°-2cos60°+(-1)2009+|-manfen5.com 满分网|
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.