满分5 > 初中数学试题 >

已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x...

已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),
(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;
(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是______
(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)
(3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.
(1)把P坐标代入所给的函数解析式即可; (2)关于y轴对称,函数的开口方向不变还是开口向上,对称轴也关于y轴对称.原来的对称轴是x=1,那么新函数的对称轴是x=-1,Q1,Q2都在对称轴的左侧,那么y随x的增大而减小.∴q1<q2; (3)∵AM=MB,△AMB是直角三角形,只有∠AMB=90°,此三角形为等腰直角三角形.作出底边上的高后,底边上的高等于等于点A到中点的距离. 【解析】 (1)∵点P(-1,2)在抛物线y=x2-2x+m上,(1分) ∴2=(-1)2-2×(-1)+m,(2分) ∴m=-1.(3分) (2)【解析】 q1<q2(7分) (3)∵y=x2-2x+m =(x-1)2+m-1 ∴M(1,m-1).(8分) ∵抛物线y=x2-2x+m开口向上, 且与x轴交于点A(x1,0)、B(x2,0)(x1<x2), ∴m-1<0, ∵△AMB是直角三角形,又AM=MB, ∴∠AMB=90°△AMB是等腰直角三角形,(9分) 过M作MN⊥x轴,垂足为N. 则N(1,0), 又NM=NA. ∴1-x1=1-m, ∴x1=m,(10分) ∴A(m,0), ∴m2-2m+m=0, ∴m=0或m=1(不合题意,舍去).(12分)
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC于E点,连接BE.
(1)若BE是△DEC的外接圆⊙O的切线,求∠C的大小;
(2)当AB=1,BC=2时,求△DEC外接圆的半径.

manfen5.com 满分网 查看答案
随着余慈统筹发展战略深入实施,余姚进入高铁时代,目前,备受关注的杭甬高铁余姚段建设工程正紧张施工.为了缓解一些施工路段交通拥挤的现状,交警队设立了交通路况显示牌(如图).已知立杆AB高度是3cm,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌BC的高度.

manfen5.com 满分网 查看答案
如图,有一直径是1米的圆形铁皮,要从中剪出一个圆心角是120°的扇形ABC,
求:(1)被剪掉阴影部分的面积.
(2)若用所留的扇形铁皮围成一个圆锥,该圆锥底面圆的半径是多少?

manfen5.com 满分网 查看答案
设△ABC中BC边的长为x厘米,BC边上的高AD为y厘米,△ABC的面积是常数,已知y关于x的函数图象过点(3,4).
(1)y关于x的函数解析式和△ABC的面积;
(2)利用函数图象,求2<x<8时y的取值范围.
查看答案
如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.
(1)判断△ABC和△DEF是否相似,并说明理由;
(2)P1,P2,P3,P4,P5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.