满分5 > 初中数学试题 >

如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD. (1)判断△AB...

如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.
(1)判断△ABC的形状,并说明理由;
(2)保持图1中△ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明;
(3)保持图2中△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明.manfen5.com 满分网
(1)根据矩形的性质及勾股定理,即可判断△ABC的形状; (2)(3)通过证明△ACD≌△CBE,根据全等三角形的性质得出即可得线段AD、BE、DE长度之间的关系. 【解析】 (1)△ABC是等腰直角三角形.理由如下: 在△ADC与△BEC中,AD=BE,∠D=∠E=90°,DC=EC, ∴△ADC≌△BEC(SAS), ∴AC=BC,∠DCA=∠ECB. ∵AB=2AD=DE,DC=CE, ∴AD=DC, ∴∠DCA=45°, ∴∠ECB=45°, ∴∠ACB=180°-∠DCA-∠ECB=90°. ∴△ABC是等腰直角三角形. (2)DE=AD+BE.理由如下: 在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC, ∴△ACD≌△CBE(AAS), ∴AD=CE,DC=EB. ∴DC+CE=BE+AD, 即DE=AD+BE. (3)DE=BE-AD.理由如下: 在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC, ∴△ACD≌△CBE(AAS), ∴AD=CE,DC=EB. ∴DC-CE=BE-AD, 即DE=BE-AD.
复制答案
考点分析:
相关试题推荐
已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.
(1)求证:BE=DF;
(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论.

manfen5.com 满分网 查看答案
如图,有一张三角形纸片,两直角边BC=6cm,AC=8cm,将△ABC折叠,使点A与点B重合,折痕为DE,求CE的长.

manfen5.com 满分网 查看答案
如图,已知:等腰梯形ABCD,AD∥BC,对角线AC⊥BD,AD=3cm,BC=5cm,则对角线AC=    cm.
manfen5.com 满分网 查看答案
注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.青山村种的水稻2007年平均每公顷产8 000kg,2009年平均每公顷产9 680kg,求该村水稻每公顷产量的年平均增长率.
解题方案:
设该村水稻每公顷产量的年平均增长率为x.
(Ⅰ)用含x的代数式表示:
①2008年种的水稻平均每公顷的产量为______
②2009年种的水稻平均每公顷的产量为______
(Ⅱ)根据题意,列出相应方程______
(Ⅲ)解这个方程,得______
(Ⅳ)检验:______
(Ⅴ)答:该村水稻每公顷产量的年平均增长率为______%.
查看答案
已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.
求证:(1)△ADF≌△CBE;
(2)EB∥DF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.