满分5 > 初中数学试题 >

在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线...

在直角坐标平面内,O为原点,点A的坐标为(1,0),点C的坐标为(0,4),直线CM∥x轴(如图所示).点B与点A关于原点对称,直线y=x+b(b为常数)经过点B,且与直线CM相交于点D,连接OD.
(1)求b的值和点D的坐标;
(2)设点P在x轴的正半轴上,若△POD是等腰三角形,求点P的坐标;
(3)在(2)的条件下,如果以PD为半径的圆P与圆O外切,求圆O的半径.

manfen5.com 满分网
(1)先求出点B的坐标,由直线过点B,把点B的坐标代入解析式,可求得b的值;点D在直线CM上,其纵坐标为4,利用求得的解析式确定该点的横坐标即可; (2)△POD为等腰三角形,有三种情况:PO=OD,PO=PD,DO=DP,故需分情况讨论,要求点P的坐标,只要求出点P到原点O的距离即可; (3)结合(2),可知⊙O的半径也需根据点P的不同位置进行分类讨论. 【解析】 (1)∵B与A(1,0)关于原点对称 ∴B(-1,0) ∵y=x+b过点B ∴-1+b=0,b=1 ∴y=x+1 当y=4时,x+1=4,x=3 ∴D(3,4); (2)作DE⊥x轴于点E,则OE=3,DE=4, ∴OD=. 若△POD为等腰三角形,则有以下三种情况: ①以O为圆心,OD为半径作弧交x轴的正半轴于点P1,则OP1=OD=5, ∴P1(5,0). ②以D为圆心,DO为半径作弧交x轴的正半轴于点P2,则DP2=DO=5, ∵DE⊥OP2 ∴P2E=OE=3, ∴OP2=6, ∴P2(6,0). ③取OD的中点N,过N作OD的垂线交x轴的正半轴于点P3,则OP3=DP3, 易知△ONP3∽△DCO. ∴=. ∴=,OP3=. ∴P3(,0). 综上所述,符合条件的点P有三个,分别是P1(5,0),P2(6,0),P3(,0). (3)①当P1(5,0)时,P1E=OP1-OE=5-3=2,OP1=5, ∴P1D===2. ∴⊙P的半径为. ∵⊙O与⊙P外切, ∴⊙O的半径为5-2. ②当P2(6,0)时,P2D=DO=5,OP2=6, ∴⊙P的半径为5. ∵⊙O与⊙P外切, ∴⊙O的半径为1. ③当P3(,0)时,P3D=OP3=, ∴⊙P的半径为. ∵⊙O与⊙P外切, ∴⊙O的半径为0,即此圆不存在.
复制答案
考点分析:
相关试题推荐
已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.
(1)当扇形CEF绕点C在∠ACB的内部旋转时,如图①,求证:MN2=AM2+BN2
思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.
请你完成证明过程:
(2)当扇形CEF绕点C旋转至图②的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.
manfen5.com 满分网
查看答案
某厂生产一种旅行包,每个旅行包的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部旅行包的出厂单价就降低0.02元,根据市场调查,销售商一次订购量不会超过550个.
(1)设销售商一次订购量为x个,旅行包的实际出厂单价为y元,写出当一次订购量超过100个时,y与x的函数关系式;
(2)求当销售商一次订购多少个旅行包时,可使该厂获得利润6000元?(售出一个旅行包的利润=实际出厂单价-成本)
查看答案
如图所示,小吴和小黄在玩转盘游戏时,准备了两个可以自由转动的转盘甲、乙,内阁转盘被分成面积相等的几个扇形区域,并在每个扇形区域内标上数字,游戏规则:同时转动两个转盘,当转盘停止转动后,指针所指扇形区域内的数字之和为4,5或6时,则小吴胜否则小黄胜.(如果指针恰好在分割线上,那么重转一次,直到指针指向某一扇形区域为止)
(1)这个游戏规则对双方公平吗?说说你的理由;
(2)请你设计一个对双方都公平的游戏规则.

manfen5.com 满分网 查看答案
如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.
(1)求证:BC是⊙O切线;
(2)若BD=5,DC=3,求AC的长.

manfen5.com 满分网 查看答案
如图,正方形ABCD和正方形EFGH的边长分别为manfen5.com 满分网manfen5.com 满分网,对角线BD、FH都在直线l上.O1、O2分别是正方形的中心,线段O1O2的长叫做两个正方形的中心距.当中心O2在直线l上平移时,正方形EFGH也随之平移,在平移时正方形EFGH的形状、大小没有改变.manfen5.com 满分网
(1)当中心O2在直线l上平移到两个正方形只有一个公共点时,中心距O1O2等于多少?
(2)随着中心O2在直线l上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写计算过程).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.