满分5 > 初中数学试题 >

正方形的A1B1P1P2顶点P1、P2在反比例函数y= (x>0)的图象上,顶点...

正方形的A1B1P1P2顶点P1、P2在反比例函数y=manfen5.com 满分网 (x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=manfen5.com 满分网 (x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为   
manfen5.com 满分网
作P1C⊥y轴于C,P2D⊥x轴于D,P3E⊥x轴于E,P3F⊥P2D于F,设P1(a,),则CP1=a,OC=,易得Rt△P1B1C≌Rt△B1A1O≌Rt△A1P2D,则OB1=P1C=A1D=a,所以OA1=B1C=P2D=-a,则P2的坐标为(,-a),然后把P2的坐标代入反比例函数y=,得到a的方程,解方程求出a,得到P2的坐标;设P3的坐标为(b,),易得Rt△P2P3F≌Rt△A2P3E,则P3E=P3F=DE=,通过OE=OD+DE=2+=b,这样得到关于b的方程,解方程求出b,得到P3的坐标. 【解析】 作P1C⊥y轴于C,P2D⊥x轴于D,P3E⊥x轴于E,P3F⊥P2D于F,如图, 设P1(a,),则CP1=a,OC=, ∵四边形A1B1P1P2为正方形, ∴Rt△P1B1C≌Rt△B1A1O≌Rt△A1P2D, ∴OB1=P1C=A1D=a, ∴OA1=B1C=P2D=-a, ∴OD=a+-a=, ∴P2的坐标为(,-a), 把P2的坐标代入y= (x>0),得到(-a)•=2,解得a=-1(舍)或a=1, ∴P2(2,1), 设P3的坐标为(b,), 又∵四边形P2P3A2B2为正方形, ∴Rt△P2P3F≌Rt△A2P3E, ∴P3E=P3F=DE=, ∴OE=OD+DE=2+, ∴2+=b,解得b=1-(舍),b=1+, ∴==-1, ∴点P3的坐标为 (+1,-1). 故答案为:(+1,-1).
复制答案
考点分析:
相关试题推荐
如图,点A在x轴的负半轴上,点B在y轴的正半轴上,∠ABO=30°,AO=2,将△AOB绕原点O顺时针旋转后得到△A′OB′.当点A′恰好落在AB上时,点B′的坐标为   
manfen5.com 满分网 查看答案
某工厂计划从2008年到2010年间,把某种产品的利润由100元提高到121元,设平均每年提高的百分率x,则可列方程    ,求得每年提高的百分率是    查看答案
如图,BD是⊙O的直径,∠A=30°,则∠CBD=    度.
manfen5.com 满分网 查看答案
已知△ABC中,AB=5cm,BC=4cm,AC=3cm,那么△ABC的外接圆半径为    cm. 查看答案
如图,等腰梯形ABCD中,AD∥BC,∠B=60°,AD=4,BC=7,则梯形ABCD的周长是   
manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.