满分5 > 初中数学试题 >

如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D. (1)请写出五...

如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.
(1)请写出五个不同类型的正确结论;
(2)若BC=8,ED=2,求⊙O的半径.

manfen5.com 满分网
(1)AB是⊙O的直径,则AB所对的圆周角是直角,BC是弦,OD⊥BC于E,则满足垂径定理的结论; (2)OD⊥BC,则BE=CE=BC=4,在Rt△OEB中,由勾股定理就可以得到关于半径的方程,可以求出半径. 【解析】 (1)不同类型的正确结论有: ①BE=CE; ②弧BD=弧DC; ③∠BED=90°; ④∠BOD=∠A; ⑤AC∥OD; ⑥AC⊥BC; ⑦OE2+BE2=OB2; ⑧S△ABC=BC•OE; ⑨△BOD是等腰三角形; ⑩△BOE∽△BAC… 说明:1、每写对一条给1分,但最多给5分; 2、结论与辅助线有关且正确的,也相应给分. (2)∵OD⊥BC, ∴BE=CE=BC=4, 设⊙O的半径为R,则OE=OD-DE=R-2,(7分) 在Rt△OEB中,由勾股定理得: OE2+BE2=OB2,即(R-2)2+42=R2, 解得R=5, ∴⊙O的半径为5.                      (10分)
复制答案
考点分析:
相关试题推荐
如图,网格中的图案是美国总统Garfield于1876年给出的一种验证某个著名结论的方法:
(1)请你画出直角梯形EDBC绕EC中点O顺时针方向旋转180°的图案,你会得到一个美丽的图案.(阴影部分不要涂错).
(2)若网格中每个小正方形边长为单位1,旋转后A、B、D的对应点为A′、B′、D′,求四边形ACA′E的面积?
(3)根据旋转前后形成的这个美丽图案,你能说出这个著名的结论吗?若能,请你写出这个结论.

manfen5.com 满分网 查看答案
某市为解决农村饮用水问题,2010年投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2012年该市计划投资“改水工程”1176万元.
(1)求A市投资“改水工程”的年平均增长率;
(2)从2010年到2012年,A市三年共投资“改水工程”多少万元?
查看答案
如图,AB是⊙O的弦,OC⊥OA交AB于点C,过B的直线交OC的延长线于点E,当CE=BE时,直线BE与⊙O有怎样的位置关系?请说明理由.

manfen5.com 满分网 查看答案
一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.
(1)从箱子中任意摸出一个球是白球的概率是多少?
(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.
查看答案
解方程:
(1)(2x-1)(x-2)=-1          (2)2x(x-3)+x=3.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.