(1)利用一元二次方程的根的判别式就可以得到关于k的不等式,解不等式即可求出k的取值范围;
(2)|x1|=x2,即方程的两根相等或互为相反数,当两根相等时判别式△=0;当方程的两根互为相反数时,两根的和是0,利用根与系数的关系可以得到关于k的方程,然后解方程即可求出k的值.
【解析】
(1)△=[-(k+1)]2-4(k2+1)=2k-3,
∵△≥0,即2k-3≥0,
∴k≥,
∴当k≥时,方程有两个实数根;
(2)由|x1|=x2,
①当x1≥0时,得x1=x2,
∴方程有两个相等实数根,
∴△=0,即2k-3=0,k=.
又当k=时,有x1=x2=>0
∴k=符合条件;
②当x1<0时,得x2=-x1,
∴x1+x2=0
由根与系数关系得k+1=0,
∴k=-1,
由(1)知,与k≥矛盾,
∴k=-1(舍去),
综上可得,k=.