满分5 > 初中数学试题 >

在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α...

在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.
manfen5.com 满分网
(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由;
(3)在(2)的情况下,求ED的长.
(1)根据旋转的性质得到对应边相等和对应角相等,从而得到全等三角形,根据全等三角形的性质进行证明; (2)在(1)的基础上,易发现该四边形的四条边相等,从而证明是菱形; (3)根据菱形的性质和解直角三角形的知识以及等腰三角形的性质求解. 【解析】 (1)EA1=FC. 证明:(证法一)∵AB=BC, ∴∠A=∠C. 由旋转可知,AB=BC1,∠A=∠C1,∠ABE=∠C1BF, ∴△ABE≌△C1BF. ∴BE=BF,又∵BA1=BC, ∴BA1-BE=BC-BF.即EA1=FC. (证法二)∵AB=BC,∴∠A=∠C. 由旋转可知,∠A1=∠C,A1B=CB,而∠EBC=∠FBA1, ∴△A1BF≌△CBE. ∴BE=BF,∴BA1-BE=BC-BF, 即EA1=FC. (2)四边形BC1DA是菱形. 证明:∵∠A1=∠ABA1=30°, ∴A1C1∥AB,同理AC∥BC1. ∴四边形BC1DA是平行四边形. 又∵AB=BC1, ∴四边形BC1DA是菱形. (3)(解法一)过点E作EG⊥AB于点G,则AG=BG=1. 在Rt△AEG中,AE=. 由(2)知四边形BC1DA是菱形, ∴AD=AB=2, ∴ED=AD-AE=2-. (解法二)∵∠ABC=120°,∠ABE=30°,∴∠EBC=90°. 在Rt△EBC中,BE=BC•tanC=2×tan30°=. ∴EA1=BA1-BE=2-. ∵A1C1∥AB, ∴∠A1DE=∠A. ∴∠A1DE=∠A1. ∴ED=EA1=2-.
复制答案
考点分析:
相关试题推荐
有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:
(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少;
(2)若此单位恰好花费7500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?
查看答案
manfen5.com 满分网如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.
查看答案
如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C.∠DAB=∠B=30°.
(1)直线BD是否与⊙O相切?为什么?
(2)连接CD,若CD=5,求AB的长.

manfen5.com 满分网 查看答案
已知一元二次方程x2-2x+m=0.
(1)若方程有两个实数根,求m的范围;
(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.
查看答案
为落实素质教育要求,促进学生全面发展,我市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元
(1)求该学校为新增电脑投资的年平均增长率;
(2)从2009年到2011年,该中学三年为新增电脑共投资多少万元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.