满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x=3和x...

已知抛物线y=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x=3和x=-3时,这条抛物线上对应点的纵坐标相等.经过点C(0,-2)的直线l与x轴平行,O为坐标原点.
(1)求直线AB和这条抛物线的解析式;
(2)以A为圆心,AO为半径的圆记为⊙A,判断直线l与⊙A的位置关系,并说明理由;
(3)设直线AB上的点D的横坐标为-1,P(m,n)是抛物线y=ax2+bx+c上的动点,当△PDO的周长最小时,求四边形CODP的面积.

manfen5.com 满分网
(1)用待定系数法即可求出直线AB的解析式;根据“当x=3和x=-3时,这条抛物线上对应点的纵坐标相等”可知:抛物线的对称轴为y轴,然后用待定系数法即可求出抛物线的解析式; (2)根据A点坐标可求出半径OA的长,然后判断A到直线l的距离与半径OA的大小关系即可; (3)根据直线AB的解析式可求出D点的坐标,即可得到OD的长,由于OD的长为定值,若△POD的周长最小,那么PD+OP的长最小,可过P作y轴的平行线,交直线l于M;首先证PO=PM,此时PD+OP=PD+PM,而PD+PM≥DM,因此PD+PM最小时,应有PD+PM=DM,即D、P、M三点共线,由此可求得P点的坐标;此时四边形CODP是梯形,根据C、O、D、P四点坐标即可求得上下底DP、OC的长,而梯形的高为D点横坐标的绝对值由此可求出四边形CODP的面积. 【解析】 (1)设直线AB的解析式为y=kx+b,则有: , 解得; ∴直线AB的解析式为y=-x+1; 由题意知:抛物线的对称轴为y轴,则抛物线经过(-4,3),(2,0),(-2,0)三点; 设抛物线的解析式为:y=a(x-2)(x+2), 则有:3=a(-4-2)(-4+2),a=; ∴抛物线的解析式为:y=x2-1; (2)易知:A(-4,3),则OA==5; 而A到直线l的距离为:3-(-2)=5; 所以⊙A的半径等于圆心A到直线l的距离, 即直线l与⊙A相切; (3)过D点作DM∥y轴交直线于点M交抛物线于点P, 则P(m,n),M(m,-2); ∴PO2=m2+n2,PM2=(n+2)2; ∵n=m2-1,即m2=4n+4; ∴PO2=n2+4n+4=(n+2)2, 即PO2=PM2,PO=PM; 易知D(-1,),则OD的长为定值; 若△PDO的周长最小,则PO+PD的值最小; ∵PO+PD=PD+PM≥DM, ∴PD+PO的最小值为DM, 即当D、P、M三点共线时PD+PM=PO+PD=DM; 此时点P的横坐标为-1,代入抛物线的解析式可得y=-1=-, 即P(-1,-); ∴S四边形CPDO=(CO+PD)×|xD|=×(2++)×1=.
复制答案
考点分析:
相关试题推荐
小敏的爸爸买了某项体育比赛的一张门票,她和哥哥两人都很想去观看.可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2,3,5,9的四张牌给小敏,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小敏去;如果和为奇数,则哥哥去.
(1)请用画树形图或列表的方法求小敏去看比赛的概率;
(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.

manfen5.com 满分网 查看答案
(1)如图1,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是弧manfen5.com 满分网的中点,在直径CD上找一点,使BP+AP的值最小,并求BP+AP的最小值.
(2)拓展延伸:如图2,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.manfen5.com 满分网
查看答案
如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
manfen5.com 满分网 查看答案
通过配方,确定抛物线y=-2x2+4x+6的开口方向、对称轴和顶点坐标.
查看答案
如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.
(1)请在图1中画出光点P经过的路径;
(2)求光点P经过的路径总长(结果保留π).
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.