满分5 > 初中数学试题 >

某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家...

某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
(1)根据题意易求y与x之间的函数表达式. (2)已知函数解析式,设y=4800可从实际得x的值. (3)利用x=-求出x的值,然后可求出y的最大值. 【解析】 (1)根据题意,得y=(2400-2000-x)(8+4×), 即y=-x2+24x+3200;(2分) (2)由题意,得-x2+24x+3200=4800. 整理,得x2-300x+20000=0.(4分) 解这个方程,得x1=100,x2=200.(5分) 要使百姓得到实惠,取x=200元. ∴每台冰箱应降价200元;(6分) (3)对于y=-x2+24x+3200=-(x-150)2+5000, 当x=150时,(8分) y最大值=5000(元). 所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.(10分)
复制答案
考点分析:
相关试题推荐
如图,抛物线y=x2+2x-3与x轴交于A、B两点,与y轴交于C点.
(1)求抛物线的顶点坐标;
(2)设直线y=x+3与y轴的交点是D,在线段AD上任意取一点E(不与A、D重合),经过A、B、E三点的圆交直线AC于点F,试判断△BEF的形状.

manfen5.com 满分网 查看答案
如图,以正△ABC的AB边为直径画⊙O,分别交AC、BC于点D、E,已知AB=6cm,求弧DE的长及阴影部分的面积.

manfen5.com 满分网 查看答案
已知点A(1,1)在二次函数y=x2-2ax+b图象上.
(1)用含a的代数式表示b;
(2)如果该二次函数的图象与x轴只有一个交点,求这个二次函数的图象的顶点坐标.
查看答案
用圆规、直尺作图,不写作法,但要保留作图痕迹.
为美化校园,学校准备修建一个面积最小的圆形花坛来覆盖住如图所示的△ABC(∠BAC为钝角)空地,请在图中作出这个圆.

manfen5.com 满分网 查看答案
如图,已知在⊙O中,AB=4manfen5.com 满分网,AC是⊙O的直径,AC⊥BD于F,∠A=30度.
(1)求图中阴影部分的面积;
(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.