如图,直线y=2x+4与x轴、y轴分别交于A、B两点,把△OAB绕点O顺时针旋转90°得到△OCD.
(1)求经过A、B、D三点的抛物线的解析式;
(2)在所求的抛物线上是否存在一点P,使直线CP把△OCD分成面积相等的两部分?如果存在,求出点P的坐标;如果不存在,请说明理由.
考点分析:
相关试题推荐
圆锥的底面半径是3,母线长是9,P是底面圆周上一点:从点P拉一根绳子绕圆锥侧面一周,再回到P点,求这根绳子的最短长度.
查看答案
如图:AB是⊙O的直径,BC是弦,D是弧BC的中点,OD交BC于点E,且BC=8,ED=2.
①求⊙O的半径;
②求点C到AB的距离.
查看答案
某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件,经调查这种商品每降低1元,其销量可增加10件.
①求商场原来一天可获利润多少元?
②设后来该商品每件降价x元,一天可获利润y元.
1)若经营该商品一天要获利2160元,则每件商品应降价多少元?
2)当售价为多少时,获利最大并求最大值?
查看答案
如图:一次函数y
1=kx+b的图象与反比例函数
的图象交于点A(-2,-5),C(5,n)
①求这二个函数的表达式;
②观察图象,写出使y
1≥y
2的自变量x的取值范围.
查看答案
二次函数y=x
2+bx+c的图象与y轴的负半轴相交于点C(0,-3)与x轴正半轴相交于点B,且OB=OC.
①求B点坐标;
②求函数的解析式及最小值;
③写出y随x的增大而减小的自变量x的取值范围.
查看答案