南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x万元,每辆汽车的销售利润为y万元.(销售利润=销售价-进货价)
(1)求y与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;
(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;
(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大,最大利润是多少?
考点分析:
相关试题推荐
保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1月的利润为200万元.设2009年1月为第1个月,第x个月的利润为y万元.由于排污超标,该厂从2009年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图)
(1)分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式.
(2)治污改造工程完工后经过几个月,该厂利润才能达到2009年1月的水平?
(3)当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?
查看答案
已知P(-3,m)和Q(1,m)是抛物线y=2x
2+bx+1上的两点.
(1)求b的值;
(2)判断关于x的一元二次方程2x
2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;
(3)将抛物线y=2x
2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.
查看答案
如图,抛物线的对称轴是直线x=1,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(-1,0)、(0,3)
(1)求此抛物线对应的函数解析式;
(2)若点P是抛物线上位于x轴上方的一个动点,求△ABP面积的最大值;
(3)若过点A(-1,0)的直线AD与抛物线的对称轴和x轴围成的三角形的面积为6,求此直线的解析式.
查看答案
如图,已知一次函数y
1=x+m(m为常数)的图象与反比例函数
(k为常数,k≠0)的图象相交点A(1,3).
(1)求这两个函数的解析式及其图象的另一交点B的坐标;
(2)观察图象,写出使函数值y
1≥y
2的自变量x的取值范围.
查看答案
已知二次函数y=-(x-1)
2+4
(1)先确定其图象的开口方向,对称轴和顶点坐标,再画出草图.
(2)观察图象确定:x取何值时,①y=0,②y>0,(3)y<0.
查看答案