满分5 > 初中数学试题 >

如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的...

如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合.(在图3至图6中统一用F表示)
manfen5.com 满分网
小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.
(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;
(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;
(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH﹦DH.
manfen5.com 满分网
(1)根据题意,分析可得:图形平移的距离就是线段BF的长,进而在Rt△ABC中求得BF=5cm,即图形平移的距离是5cm; (2)在Rt△EFD中,求出FD的长,根据直角三角形的性质,可得:FG=FD,即可求得FG的值; (3)借助平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,容易证明. 【解析】 (1)图形平移的距离就是线段BF的长, 又∵在Rt△ABC中,斜边长为10cm,∠BAC=30°, ∴BF=5cm, ∴平移的距离为5cm; (2)∵∠A1FA=30°, ∴∠GFD=60°,∠D=30°, ∴∠FGD=90°, 在Rt△EFD中,ED=10cm, ∵FD=, ∴FG=cm; (3)△AHE与△DHB1中, ∵∠FAB1=∠EDF=30°, ∵FD=FA,EF=FB=FB1, ∴FD-FB1=FA-FE,即AE=DB1, 又∵∠AHE=∠DHB1, ∴△AHE≌△DHB1(AAS), ∴AH=DH.
复制答案
考点分析:
相关试题推荐
如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30度.
(1)求∠APB的度数;
(2)当OA=3时,求AP的长.

manfen5.com 满分网 查看答案
如图,已知扇形的圆心角为120°,面积为300π.
(1)求扇形的弧长;
(2)若将此扇形卷成一个圆锥,则这个圆锥的高为多少?

manfen5.com 满分网 查看答案
如图,在△ABC中,以各顶点为圆心分别作⊙A、⊙B、⊙C,且半径都是2cm,求图中的三个扇形(即三个阴影部分)的面积之和.

manfen5.com 满分网 查看答案
如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为8cm,AB=10cm,求OA长.

manfen5.com 满分网 查看答案
尺规作图:任意画一个钝角三角形,然后作出它的外接圆.(请保留作图痕迹)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.