由∠ACB=90°,得到三角形ABC为直角三角形,根据直角三角形的两锐角互余可得∠A与∠B互余,再由CD垂直于AB,根据垂直定义得到∠ADC=90°,同理可得∠A与∠ACD互余,根据同角的余角相等可得∠ACD与∠B相等,在直角三角形ACD中,由AC及CD的长,利用勾股定理求出AD的长,再利用锐角三角形函数定义求出sinA和sin∠ACD,从而得到sinA+sinB的值.
【解析】
∵∠ACB=90°,
∴∠A+∠B=90°,
又∵CD⊥AB,
∴∠ADC=90°,
∴∠A+∠ACD=90°,
∴∠B=∠ACD,
在Rt△ACD中,AC=5,CD=3,
根据勾股定理得:AD=4,
∴在Rt△ACD中,
sinA==,sinB=sin∠ACD==,
则sinA+sinB=+=.
故选D