满分5 > 初中数学试题 >

如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△A...

如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,交连接AC、FC.
(1)求证:∠ACF=∠ADB;
(2)若点A到BD的距离为m,BF+CF=n,求线段CD的长;
(3)当⊙P的大小发生变化而其他条件不变时,manfen5.com 满分网的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.

manfen5.com 满分网
(1)连接AB,根据线段垂直平分线性质求出AB=AC=AD,推出∠ADB=∠ABD,根据∠ABD=∠ACM求出即可; (2)过点A作AM⊥CF交CF的延长线于M,过点A作AN⊥BF于N,连接AF,根据AAS证Rt△ABN≌Rt△ACM,推出BN=CM,AN=AM,证Rt△AFN≌Rt△AFM(HL),推出NF=MF,求出BN长,根据勾股定理和等腰直角三角形性质求出CD的平方,即可求出答案; (3)过点D作DH⊥AO于N,过点D作DQ⊥BC于Q,根据AAS证Rt△DHA≌Rt△AOC,推出DH=AO,AH=OC,推出DQ=BQ,得出∠DBQ=45°,推出∠HDE=45°,得出等腰直角三角形DHE即可. (1)证明:连接AB, ∵OP⊥BC, ∴BO=CO, ∴AB=AC, 又∵AC=AD, ∴AB=AD, ∴∠ABD=∠ADB, 又∵∠ABD=∠ACF, ∴∠ACF=∠ADB.                                           (2)【解析】 过点A作AM⊥CF交CF的延长线于M,过点A作AN⊥BF于N,连接AF, 则AN=m, ∴∠ANB=∠AMC=90°, 在△ABN和△ACM中 , ∴Rt△ABN≌Rt△ACM(AAS) ∴BN=CM,AN=AM, 又∵∠ANF=∠AMF=90°, 在Rt△AFN和Rt△AFM中 , ∴Rt△AFN≌Rt△AFM(HL), ∴NF=MF, ∴BF+CF=BN+NF+CM-MF, =BN+CM=2BN=n, ∴BN=, ∴在Rt△ABN中,AB2=BN2+AN2=m2+=m2+, 在Rt△ACD中,CD2=AB2+AC2=2AB2=2m2+, ∴CD=.                                     (3)【解析】 的值不发生变化, 过点D作DH⊥AO于N,过点D作DQ⊥BC于Q,             ∵∠DAH+∠OAC=90°,∠DAH+∠ADH=90°, ∴∠OAC=∠ADH, 在△DHA和△AOC中 , ∴Rt△DHA≌Rt△AOC(AAS), ∴DH=AO,AH=OC, 又∵BO=OC, ∴HO=AH+AO=OB+DH, 而DH=OQ,HO=DQ, ∴DQ=OB+OQ=BQ, ∴∠DBQ=45°, 又∵DH∥BC, ∴∠HDE=45°, ∴△DHE为等腰直角三角形, ∴=, ∴=.
复制答案
考点分析:
相关试题推荐
如图甲,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角△DCE中,∠DCE是直角,点D在线段AC上.
(1)问B、C、E三点在一条直线上吗?为什么?
(2)若M是线段BE的中点,N是线段AD的中点,试求manfen5.com 满分网的值;
(3)将△DCE绕点C逆时针旋转α(O°<α<90°)后,记为△D1CE1(图乙),若M1是线段BE1的中点,N1是线段AD1的中点,则manfen5.com 满分网=______

manfen5.com 满分网 查看答案
某校课外活动小组准备利用学校的一面墙,用长为30米的篱笆围成一个矩形生物苗圃园.
(1)若墙长为18米(如图所示),当垂直于墙的一边的长为多少米时,这个苗圃园的面积等于88平方米?
(2)当垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.

manfen5.com 满分网 查看答案
如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

manfen5.com 满分网 查看答案
在平面直角坐标系中有A(O,2),B(l,0)两点,将线段AB以O为旋转中心顺时针分别旋转
90°,270°,请依次画出旋转后的图形A1B1和A2B2

manfen5.com 满分网 查看答案
如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E.求证:四边形AEOD是正方形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.