满分5 > 初中数学试题 >

已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD...

已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.
(1)如图1,当点D在边BC上时,
①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
manfen5.com 满分网
(1)此题只需由AB=AC,AD=AF,∠BAD=∠CAF,按照SAS判断两三角形全等得出∠ADB=∠AFC; (2)此题应先判断得出正确的等量关系,然后再根据△ABD≌△ACF即可证明; (3)此题只需补全图形后由图形即可得出∠AFC、∠ACB、∠DAC之间存在的等量关系. 【解析】 (1)①证明:∵△ABC为等边三角形, ∴AB=AC,∠BAC=60°, ∵∠DAF=60°, ∴∠BAC=∠DAF, ∴∠BAD=∠CAF, ∵四边形ADEF是菱形,∴AD=AF, 在△ABD和△ACF中 AB=AC,∠BAD=∠CAF,AD=AF, ∴△ABD≌△ACF, ∴∠ADB=∠AFC, ②结论:∠AFC=∠ACB+∠DAC成立. (2)结论∠AFC=∠ACB+∠DAC不成立. ∠AFC、∠ACB、∠DAC之间的等量关系是∠AFC=∠ACB-∠DAC. 证明:∵△ABC为等边三角形, ∴AB=AC, ∠BAC=60°, ∵∠BAC=∠DAF, ∴∠BAD=∠CAF, ∵四边形ADEF是菱形, ∴AD=AF. 在△ABD和△ACF中 AB=AC,∠BAD=∠CAF,AD=AF, ∴△ABD≌△ACF. ∴∠ADB=∠AFC. 又∵∠ACB=∠ADC+∠DAC, ∴∠AFC=∠ACB-∠DAC. (3)补全图形如下图: ∠AFC、∠ACB、∠DAC之间的等量关系是:∠AFC=2∠ACB-∠DAC (或∠AFC+∠DAC+∠ACB=180°以及这两个等式的正确变式).
复制答案
考点分析:
相关试题推荐
如图,平行四边形ABCD中,AB⊥AC,AB=1,BC=manfen5.com 满分网.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.

manfen5.com 满分网 查看答案
为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.
(1)求每年市政府投资的增长率;
(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.
查看答案
如图,正比例函数manfen5.com 满分网的图象与反比例函数manfen5.com 满分网(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数在第一象限图象上的点,且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.(只需在图中作出点B,P,保留痕迹,不必写出理由)

manfen5.com 满分网 查看答案
如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM中点.
(1)求证:四边形MENF是菱形;
(2)若四边形MENF是正方形,请探索等腰梯形ABCD的高和底边BC的数量关系,并证明你的结论.

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.
(1)求∠DAC的度数;
(2)求证:DC=AB.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.