满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,点A的坐标为(1,-2),点B的坐标为(3,-1),...

如图1,在平面直角坐标系中,点A的坐标为(1,-2),点B的坐标为(3,-1),二次函数y=-x2的图象为l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的抛物线的一个解析式(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A、B两点,记抛物线为l2,如图2,求抛物线l2的函数解析式及顶点C的坐标;
(3)设P为y轴上一点,且S△ABC=S△ABP,求点P的坐标;
(4)请在图2上用尺规作图的方式探究抛物线l2上是否存在点Q,使△QAB为等腰三角形?若存在,请判断点Q共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.manfen5.com 满分网
做这类题时要综合二次函数的图象,及等腰三角形的知识. 【解析】 (1)让抛物线过点A,即把点A的坐标代入计算,得到,b+c=-1,不过点B,则把点B的坐标代入得到3b+c≠8,依此两个要求,随便找一个数即可.故平移后的抛物线的一个解析式y=-x2+2x-3或y=-x2+4x-5等(满足条件即可);(1分) (2)设l2的解析式为y=-x2+bx+c,联立方程组, 解得:,则l2的解析式为y=-x2+x-.(3分) 点C的坐标为().(4分) (3)如答图1,过点A、B、C三点分别作x轴的垂线,垂足分别为D、E、F, 则AD=2,CF=,BE=1,DE=2,DF=,FE=. 得:S△ABC=S梯形ABED-S梯形BCFE-S梯形ACFD=.(5分) 延长BA交y轴于点G,直线AB的解析式为y=x-,则点G的坐标为(0,),设点P的坐标为(0,h), ①当点P位于点G的下方时,,连接AP、BP, 则S△ABP=S△BPG-S△APG=--h,又S△ABC=S△ABP=,得,点P的坐标为(0,).(6分) ②当点P位于点G的上方时,,同理,点P的坐标为(0,). 综上所述所求点P的坐标为(0,)或(0,)(7分) (4)作图痕迹如答图2所示. 若AB为等腰三角形的腰,则分别以A、B为圆心,以AB长为半径画圆,交抛物线分别于Q1、Q2; 若AB为等腰三角形的底边,则作AB的垂直平分线,交抛物线分别于Q3、Q4, 由图可知,满足条件的点有Q1、Q2、Q3、Q4,共4个可能的位置.(10分)
复制答案
考点分析:
相关试题推荐
我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件)30405060
每天销售量y(件)500400300200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
manfen5.com 满分网
查看答案
如图,正比例函数manfen5.com 满分网的图象与反比例函数manfen5.com 满分网(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数在第一象限图象上的点,且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.(只需在图中作出点B,P,保留痕迹,不必写出理由)

manfen5.com 满分网 查看答案
如图,已知抛物线y=-x2+2x+3与y轴交于点C,与x轴交于A,B两点,且A在B的左边,抛物线的顶点为D.
(1)求抛物线的顶点D的坐标和抛物线的对称轴;
(2)求点A,B,C三点坐标.并画出此二次函数的大致图象;
(3)根据图象回答:当x取何值,y>0;
(4)连接AC,CD,DB,求四边形ABDC的面积.

manfen5.com 满分网 查看答案
如图,已知一次函数y1=x+m(m为常数)的图象与反比例函数 manfen5.com 满分网(k为常数,k≠0)的图象相交于点 A(1,3).
(1)求这两个函数的解析式及其图象的另一交点B的坐标;
(2)点C(a,b)在反比例函数 manfen5.com 满分网的图象上,求当1≤a≤3时,b的取值范围;
(3)观察图象,写出使函数值y1≥y2的自变量x的取值范围.

manfen5.com 满分网 查看答案
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.