满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴...

如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于D点.
(1)求抛物线的函数表达式;
(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;
(3)在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.

manfen5.com 满分网
(1)把点E,A、B的坐标代入函数表达式,即可求出a、b、c的值; (2)根据C点的坐标求出直线CD的解析式,然后结合图形设出K点的坐标(t,0),表达出H点和G点的坐标,列出HG关于t的表达式,根据二次函数的性质求出最大值; (3)需要讨论解决,①若线段AC是以点A、C,M、N为顶点的平行四边形的边,当点N在点M的左侧时,MN=3-n;当点N在点M的右侧时,MN=n-3,然后根据已知条件在求n的坐标就容易了 ②若线段AC是以点A、C,M、N为顶点的平行四边形的对角线时,由“点C与点A关于点B中心对称”知:点M与点N关于点B中心对称,取点F关于点B的对称点P,则P点坐标为(-1,0) 过P点作NP⊥x轴,交抛物线于点N,结合已知条件再求n的坐标就容易了 【解析】 (1)设抛物线的函数表达式为y=a(x-1)(x+3) ∵抛物线交y轴于点E(0,-3),将该点坐标代入上式,得a=1 ∴所求函数表达式为y=(x-1)(x+3), 即y=x2+2x-3; (2)∵点C是点A关于点B的对称点,点A坐标(-3,0),点B坐标(1,0), ∴点C坐标(5,0), ∴将点C坐标代入y=-x+m,得m=5, ∴直线CD的函数表达式为y=-x+5, 设K点的坐标为(t,0),则H点的坐标为(t,-t+5),G点的坐标为(t,t2+2t-3), ∵点K为线段AB上一动点, ∴-3≤t≤1, ∴HG=(-t+5)-(t2+2t-3)=-t2-3t+8=-(t+)2+, ∵-3<-<1, ∴当t=-时,线段HG的长度有最大值; (3)∵点F是线段BC的中点,点B(1,0),点C(5,0), ∴点F的坐标为(3,0), ∵直线l过点F且与y轴平行, ∴直线l的函数表达式为x=3, ∵点M在直线l上,点N在抛物线上, ∴设点M的坐标为(3,m),点N的坐标为(n,n2+2n-3), ∵点A(-3,0),点C(5,0), ∴AC=8, 分情况讨论: ①若线段AC是以点A、C,M、N为顶点的平行四边形的边,则需MN∥AC,且MN=AC=8. 当点N在点M的左侧时,MN=3-n, ∴3-n=8,解得n=-5, ∴N点的坐标为(-5,12), 当点N在点M的右侧时,MN=n-3, ∴n-3=8, 解得n=11, ∴N点的坐标为(11,140), ②若线段AC是以点A、C,M、N为顶点的平行四边形的对角线,由“点C与点A关于点B中心对称”知:点M与点N关于点B中心对称,取点F关于点B的对称点P,则P点坐标为(-1,0) 过P点作NP⊥x轴,交抛物线于点N, 将x=-1代入y=x2+2x-3,得y=-4, 过点N作直线NM交直线l于点M, 在△BPN和△BFM中, ∠NBP=∠MBF, BF=BP, ∠BPN=∠BFM=90°, ∴△BPN≌△BFM, ∴NB=MB, ∴四边形ANCM为平行四边形, ∴坐标(-1,-4)的点N符合条件, ∴当N的坐标为(-5,12),(11,140),(-1,-4)时,以点A、C、M、N为顶点的四边形为平行四边形.
复制答案
考点分析:
相关试题推荐
某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x123456789
价格y1(元/件)560580600620640660680700720
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.

manfen5.com 满分网 查看答案
如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF的两边相交于A、B和C、D,连接OA,此时有OA∥PE.
(1)求证:AP=AO;
(2)若tan∠OPB=manfen5.com 满分网,求弦AB的长;
(3)若以图中已标明的点(即P、A、B、C、D、O)构造四边形,则能构成菱形的四个点为______,能构成等腰梯形的四个点为__________________

manfen5.com 满分网 查看答案
如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.
(1)求证:OF∥BC;
(2)求证:△AFO≌△CEB;
(3)若EB=5cm,CD=10manfen5.com 满分网cm,设OE=x,求x值及阴影部分的面积.

manfen5.com 满分网 查看答案
如图,已知点P是反比例函数manfen5.com 满分网图象上一点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交反比例函数manfen5.com 满分网图象于E、F两点.
(1)用含k1、k2的式子表示四边形PEOF的面积;
(2)若P点坐标为(-4,3),且PB:PF=2:3,分别求出k1、k2的值.

manfen5.com 满分网 查看答案
抛物线y=-x2+bx+c的部分图象如图所示,请写出与其关系式,图象相关的2个正确结论:   
(对称轴方程,图象与x正半轴,y轴交点坐标例外).
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.