满分5 > 初中数学试题 >

如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,过P点作⊙O的切线,切点...

如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC.
(1)若∠CPA=30°,求PC的长;
(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的大小.

manfen5.com 满分网
(1)作辅助线,连接OC,根据切线的性质知:OC⊥PC,由∠CPO的值和OC的长,可将PC的长求出; (2)通过角之间的转化,可知:∠CMP=(∠COP+∠CPO),故∠CMP的值不发生变化. 【解析】 (1)连接OC, ∵AB=4,∴OC=2 ∵PC为⊙O的切线,∠CPO=30° ∴PC=; (2)∠CMP的大小没有变化. 理由如下:∵∠CMP=∠A+∠MPA(三角形外角定理),∠A=∠COP(同弧所对的圆周角是所对的圆心角的一半), ∠MPA=∠CPO(角平分线的性质), ∴∠CMP=∠A+∠MPA=∠COP+∠CPO=(∠COP+∠CPO)=×90°=45°.
复制答案
考点分析:
相关试题推荐
如图,P是双曲线manfen5.com 满分网的一个分支上的一点,以点P为圆心,1个单位长度为半径作⊙P,设点P的坐标为(x,y).
(1)求当x为何值时,⊙P与直线y=3相切,并求点P的坐标.
(2)直接写出当x为何值时,⊙P与直线y=3相交、相离.

manfen5.com 满分网 查看答案
已知△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根.
(1)求证:无论k为何值时,方程总有两个不相等的实数根.
(2)k为何值时,△ABC是以BC为斜边的直角三角形.
查看答案
如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.
(Ⅰ)求∠P的大小;
(Ⅱ)若AB=2,求PA的长(结果保留根号).

manfen5.com 满分网 查看答案
如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过O作OH⊥AC于点H.若OH=2,AB=12,BO=13.求:
(1)⊙O的半径;
(2)AC的值.

manfen5.com 满分网 查看答案
某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售,求平均每次下调的百分率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.