满分5 >
初中数学试题 >
如图.在△ABC中,∠B=90°,∠A=30°,AC=4cm,将△ABC绕顶点C...
如图.在△ABC中,∠B=90°,∠A=30°,AC=4cm,将△ABC绕顶点C顺时针方向旋转至△A'B'C的位置,且A、C、B'三点在同一条直线上,则点A所经过的最短路线的长为( )
A.
B.8cm
C.
D.
考点分析:
相关试题推荐
下列各式中,运算正确的是( )
A.
B.
C.a
6÷a
3=a
2D.(a
3)
2=a
5
查看答案
下列汽车标志中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
查看答案
如图,在RT△ABC中,∠C=90°,BC=8,AC=6,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时点P从A点开始在线段AC上以每秒1个单位长度的速度向点C移动.当一点停止运动,另一点也随之停止运动.设点Q,P移动的时间为t秒.
(1)设△APQ的面积为S,求S与t的函数关系式;
(2)当t为何值时,△APQ与△ABC相似?
(3)在P、Q的运动过程中,△APQ能否构成等腰三角形?如能求出t,如不能,说明理由.
查看答案
在△ABC中,AB、BC、AC三边的长分别为
、
、
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需要求△ABC的高,而借用网格就能计算出它的面积,这种方法叫做构图法.
(1)△ABC的面积为:
(2)若△DEF三边的长分别为
、2
、
,请在图①的正方形网格中画出相应的△DEF,并利用构图法求出它的面积.
(3)利用第(2)小题解题方法完成下题:如图②,一个六边形绿化区ABCDEF被分割成7个部分,其中正方形ABQP,CDRQ,EFPR的面积分别为13,20,29,且△PQR、△BCQ、△DER、△APF的面积相等,求六边形绿化区ABCDEF的面积.
查看答案
对同一图形,从不同的角度看就会有不同的发现,请根据右图解决以下问题:
(1)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,分别以AB、AC所在的直线为对称轴,作出△ABD、△ACD的轴对称图形,点D的对称点分别为E、F,延长EB、FC相交于G点,试证明四边形AEGF是正方形;
(2)如图,在边长为12cm的正方形AEFG中,点B是边EG上一点,将边AE、AF分别沿AB、AC向内翻折至AD处,则点B、D、C在一条直线上,若EB=4cm,求△ABC的面积.
查看答案