满分5 > 初中数学试题 >

将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90...

将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.
manfen5.com 满分网
(1)我们已知了三角形BED和CAB全等,那么DE=AF+CF,因此只要求出EF=CF就能得出本题所求的结论,可通过全等三角形来实现,连接BF,那么证明三角形BEF和BCF全等就是解题的关键,这两三角形中已知的条件有BE=BC,一条公共边,根据斜边直角边定理,这两个直角三角形就全等了,也就得出EF=CF,也就能证得本题的结论了; (2)解题思路和辅助线的作法与(1)完全一样; (3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF. (1)证明:连接BF(如图①), ∵△ABC≌△DBE(已知), ∴BC=BE,AC=DE. ∵∠ACB=∠DEB=90°, ∴∠BCF=∠BEF=90°. ∵BF=BF, ∴Rt△BFC≌Rt△BFE. ∴CF=EF. 又∵AF+CF=AC, ∴AF+EF=DE. (2)【解析】 画出正确图形如图② ∴(1)中的结论AF+EF=DE仍然成立; (3)不成立. 证明:连接BF, ∵△ABC≌△DBE, ∴BC=BE, ∵∠ACB=∠DEB=90°, ∴△BCF和△BEF是直角三角形, 在Rt△BCF和Rt△BEF中, , ∴△BCF≌△BEF, ∴CF=EF; ∵△ABC≌△DBE, ∴AC=DE, ∴AF=AC+FC=DE+EF.
复制答案
考点分析:
相关试题推荐
如图,四边形ABCD中,AD∥BC,∠ABC=∠BAD=90°,AB为⊙O的直径.
(1)若AD=2,AB=BC=8,连接OC、OD.
①求△COD的面积;
②试判断直线CD与⊙O的位置关系,说明理由.
(2)若直线CD与⊙O相切于F,AD=x(x>0),AB=8.试用x表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程x2=(2k+1)x-k2+2有两个实数根为x1,x2
(1)求k的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应k的值,并求出最小值.
查看答案
一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同.
(1)小明认为,搅均后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球这两个事件是等可能的.你同意他的说法吗?为什么?
(2)搅均后从中一把摸出两个球,请通过树状图或列表,求两个球都是白球的概率.
查看答案
如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1
(1)在正方形网格中,作出△AB1C1
(2)设网格小正方形的边长为1,求旋转过程中动点B所经过的路径长.

manfen5.com 满分网 查看答案
如图,manfen5.com 满分网,D、E分别是半径OA和OB的中点,CD与CE的大小有什么关系?为什么?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.