满分5 > 初中数学试题 >

问题情境 已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长...

问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为manfen5.com 满分网
探索研究
(1)我们可以借鉴学习函数的经验,先探索函数manfen5.com 满分网的图象性质.
1填写下表,画出函数的图象:
xmanfen5.com 满分网manfen5.com 满分网manfen5.com 满分网1234
y
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数manfen5.com 满分网(x>0)的最小值.manfen5.com 满分网=manfen5.com 满分网=manfen5.com 满分网
=manfen5.com 满分网≥2
manfen5.com 满分网=0,即x=1时,函数manfen5.com 满分网(x>0)的最小值为2.
解决问题
(2)解决“问题情境”中的问题,直接写出答案.

manfen5.com 满分网
(1)①根据求代数式的值的方法将x的值函数的解析式求出其值就可以了. ②根据①表中的数据画出函数的图象,再结合表中的数据就可以写出图象的相应的性质. (2)由③的结论可以把x=直接代入y与x的函数关系式为就可以求出周长的最小值. 【解析】 (1)①当x=时,y=, 当x=时,y=, 当x=时,y=, 当x=1、2、3、4、时,则y值分别为:2,,,. ∴函数(x>0)的图象如图. ②当0<x<1时,y随x增大而减小;当x>1时,y随x增大而增大;当x=1时函数(x>0)的最小值为2. (2)由③得,当该矩形的长为时, 它的周长最小,最小值为=.
复制答案
考点分析:
相关试题推荐
王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-manfen5.com 满分网x2+manfen5.com 满分网x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)请写出抛物线的开口方向,顶点坐标,对称轴.
(2)请求出球飞行的最大水平距离.
(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.

manfen5.com 满分网 查看答案
已知:如图,等边△ABC内接于⊙O,点P是劣弧manfen5.com 满分网上的一点(端点除外),延长BP至D,使BD=AP,连接CD.
(1)若AP过圆心O,如图①,请你判断△PDC是什么三角形?并说明理由;
(2)若AP不过圆心O,如图②,△PDC又是什么三角形?为什么?

manfen5.com 满分网 查看答案
如图,在直角坐标系中,O为坐标原点.已知反比例函数y=manfen5.com 满分网(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且△AOB的面积为manfen5.com 满分网
(1)求k和m的值;
(2)点C(x,y)在反比例函数y=manfen5.com 满分网的图象上,求当1≤x≤3时函数值y的取值范围;
(3)过原点O的直线l与反比例函数y=manfen5.com 满分网的图象交于P、Q两点,试根据图象直接写出线段PQ长度的最小值.

manfen5.com 满分网 查看答案
如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.
(1)求证:∠ACO=∠BCD;
(2)若EB=8cm,CD=24cm,求⊙O的直径.

manfen5.com 满分网 查看答案
如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.
(1)求∠B的大小;
(2)已知AD=6,求圆心O到BD的距离.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.