满分5 > 初中数学试题 >

如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC...

如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度���为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.

manfen5.com 满分网
(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,CB、CN已知,根据勾股定理可求CA=5,即可表示CM; (2)四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解; (3)可先根据QN平分△ABC的周长,得出MC+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值. (4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论: ①当MP=MC时,那么PC=2NC,据此可求出t的值. ②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值. ③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值. 综上所述可得出符合条件的t的值. 【解析】 (1)∵AQ=3-t, ∴CN=4-(3-t)=1+t. 在Rt△ABC中,AC2=AB2+BC2=32+42, ∴AC=5. 在Rt△MNC中,cos∠NCM==,CM=; (2)由于四边形PCDQ构成平行四边形, ∴PC=QD,即4-t=t, 解得t=2. (3)如果射线QN将△ABC的周长平分,则有: MC+NC=AM+BN+AB, 即:(1+t)+1+t=(3+4+5), 解得:t=.(5分) 而MN=NC=(1+t), ∴S△MNC=(1+t)2=(1+t)2, 当t=时,S△MNC=(1+t)2=≠×4×3. ∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分; (4)①当MP=MC时;则有:NP=NC, 即PC=2NC∴4-t=2(1+t), 解得:t=; ②当CM=CP时;则有:(1+t)=4-t, 解得:t=; ③当PM=PC时;则有:在Rt△MNP中,PM2=MN2+PN2, 而MN=NC=(1+t), PN=|PC-NC|=|(4-t)-(1+t)|=|3-2t|, ∴[(1+t)]2+(3-2t)2=(4-t)2, 解得:t1=,t2=-1(舍去) ∴当t=,t=,t=时,△PMC为等腰三角形.
复制答案
考点分析:
相关试题推荐
如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线. (请保留画图痕迹).
manfen5.com 满分网 查看答案
在等腰梯形ABFD中,DC∥AB交BF于点C,AD∥BF,AE∥BD交CD延长线于点E.
(1)指出DF与manfen5.com 满分网CE的大小关系,并说明理由;
(2)你能确定EF与CF位置关系吗?理由是什么?

manfen5.com 满分网 查看答案
已知:如图,在梯形ABCD中,AD∥BC,AB=8cm,AH⊥BC,∠B=60度,∠C=45度,AD=5cm.
求:(1)CD的长;
(2)梯形ABCD的面积.

manfen5.com 满分网 查看答案
如图所示,直线l1⊥l2,垂足为点O,A,B是直线l1上的两点,且OB=2,AB=manfen5.com 满分网.直线l1绕点O按逆时针方向旋转,旋转角度为α(0°<α<180°).
(1)当α=60°时,在直线l2上找点P,使得△BPA是以∠B为顶角的等腰三角形,此时OP=   
(2)当α在什么范围内变化时,直线l2上存在点P,使得△BPA是以∠B为顶角的等腰三角形,请用不等式表示α的取值范围:   
manfen5.com 满分网 查看答案
如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,…,依此类推,由正n边形“扩展”而来的多边形的边数记为an(n≥3),当manfen5.com 满分网的结果是manfen5.com 满分网时,n的值   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.