满分5 > 初中数学试题 >

如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(-3,O),C(...

如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(-3manfen5.com 满分网,O),C(manfen5.com 满分网,O).
(1)求⊙M的半径;
(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.
(3)在(2)的条件下求AF的长.
manfen5.com 满分网
(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠E=∠ABC=∠AFE,再根据在同一个三角形中等角对等边及等腰三角形的性质即可解答; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案. 【解析】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=BC=2, ∴BM==4; (2)如图(二),连接AE, 证明:∵点B,和点C关于过点M且平行于y轴的直线对称,所以AM垂直平分BC交BC于D,且点D是坐标的原点, ∴∠ADB=90°,∵CE垂直AB于H,∴∠AHF=90°, ∴点H,B,D,F,四点共圆,∴∠AFH=∠ABC,∠ABC=∠E,∴∠E=∠AFH, ∴AE=AF, ∵CE垂直AB于H, ∴AH说是EF的中线, ∴EH=FH; (3)由(1)易知,∠BMT=∠BAC=60°, 作直径BG,连CG,则∠BGC=∠BAC=60°, ∵⊙O的半径为4, ∴CG=4. 连AG, ∵∠BCG=90°, ∴CG⊥x轴, ∴CG∥AF, ∵∠BAG=90°, ∴AG⊥AB, ∵CE⊥AB, ∴AG∥CE, ∴四边形AFCG为口, ∴AF=CG=4.
复制答案
考点分析:
相关试题推荐
如图,等边三角形ABC和等边三角形DEC,CE和AC重合,CE=manfen5.com 满分网AB.
(1)求证:AD=BE;
(2)若CE绕点C顺时针旋转30度,连BD交AC于点G,取AB的中点F连FG.求证:BE=2FG;
(3)在(2)的条件下AB=2,则AG=______.(直接写出结果)
manfen5.com 满分网
查看答案
端午节吃粽子是中华民族的传统习俗,今年某商场销售甲厂家的高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种.
(1)写出所有选购方案(利用树状图或列表方法求选购方案);
(2)如果(1)中各选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少?
(3)现某中学准备购买两个品种的粽子共32盒(价格如下表所示),发给学校的“留守儿童”,让他们过一个愉快的端午节,其中指定购买了甲厂家的高档粽子,再从乙厂家购买一个品种,若恰好用了1200元,请问购买了甲厂家的高档粽子多少盒?
  品  种高档中档低档精装简装
价格(元/盒)  60 40  25  50  20

查看答案
如图,在Rt△ABC中,∠B=90°,E为AB上一点,∠C=∠BEO,O是BC上一点,以D为圆心,OB长为半径作⊙O,AC是⊙O的切线.
(1)求证:OE=OC;(2)若BE=4,BC=8,求OE的长.

manfen5.com 满分网 查看答案
有一块长30m、宽20m的矩形田地,准备修筑同样宽的三条直路(如图),把田地分成四块,种植不同品种的蔬菜,并且种植蔬菜的面积为基地面积的manfen5.com 满分网.求道路的宽度.

manfen5.com 满分网 查看答案
小莉的爸爸买了去看中国篮球职业联赛总决赛的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.
(1)请用列表的方法求小莉去看中国篮球职业联赛总决赛的概率;
(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.