满分5 > 初中数学试题 >

已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=4,过A,...

已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=4manfen5.com 满分网,过A,D两点作⊙O,交AB于点E,
(1)求弦AD的长;
(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON等于多少时,三点D、E、M组成的三角形是等腰三角形?
(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP-DQ的值变不变?若不变,请求出其值;若变化,请说明理由.
manfen5.com 满分网
(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长; (2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后根据含30°的直角三角形三边的关系得DN=AD=,ON=DN=1; 当MD=ME,DE为底边,作DH⊥AE,由于AD=2,∠DAE=30°,得到DH=,∠DEA=60°,DE=2,于是OE=DE=2,OH=1, 又∠M=∠DAE=30°,MD=ME,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到∠DNO=45°,根据等腰直角三角形的性质得到NH=DH=,则ON=-1; (3)连AP、AQ,DP⊥AB,得AC∥DP,则∠PDB=∠C=60°,再根据圆周角定理得∠PAQ=∠PDB,∠AQC=∠P,则∠PAQ=60°,∠CAQ=∠PAD,易证得△AQC≌△APD,得到 DP=CQ,则DP-DQ=CQ-DQ=CD,而△ADC为等边三角形,CD=AD=2,即可得到DP-DQ的值. 【解析】 (1)∵∠BAC=90°,点D是BC中点,BC=4, ∴AD=BC=2; (2)连DE、ME,如图,∵DM>DE, 当ED和EM为等腰三角形EDM的两腰, ∴OE⊥DM, 又∵AD=AC, ∴△ADC为等边三角形, ∴∠CAD=60°, ∴∠DAO=30°, ∴∠DON=60°, 在Rt△ADN中,DN=AD=, 在Rt△ODN中,ON=DN=1, ∴当ON等于1时,三点D、E、M组成的三角形是等腰三角形; 当MD=ME,DE为底边,如图3,作DH⊥AE, ∵AD=2,∠DAE=30°, ∴DH=,∠DEA=60°,DE=2, ∴△ODE为等边三角形, ∴OE=DE=2,OH=1, ∵∠M=∠DAE=30°, 而MD=ME, ∴∠MDE=75°, ∴∠ADM=90°-75°=15°, ∴∠DNO=45°, ∴△NDH为等腰直角三角形, ∴NH=DH=, ∴ON=-1; 综上所述,当ON等于1或-1时,三点D、E、M组成的三角形是等腰三角形; (3)当⊙O变动时DP-DQ的值不变,DP-DQ=2.理由如下: 连AP、AQ,如图2, ∵∠C=∠CAD=60°, 而DP⊥AB, ∴AC∥DP, ∴∠PDB=∠C=60°, 又∵∠PAQ=∠PDB, ∴∠PAQ=60°, ∴∠CAQ=∠PAD, ∵AC=AD,∠AQC=∠P, ∴△AQC≌△APD, ∴DP=CQ, ∴DP-DQ=CQ-DQ=CD=2.
复制答案
考点分析:
相关试题推荐
已知,如图:正方形ABCD,AC是对角线,点P是AC上一点,连接PB,以PB为腰作等腰直角三角形△PBE,PE与直线AB相交于点F,连接PD,设AP=nPC.
(1)如图1直接写出:manfen5.com 满分网=______

manfen5.com 满分网 查看答案
某校九年级6个班的学生在学校矩形操场上举行新年的联谊活动,学校划分6个全等的矩形场地分给各班级,相邻班级之间留4米宽的过道(如图所示),已知操场的长是宽的2倍,6个班级所占场地面积的总和是操场面积的manfen5.com 满分网,求学校操场宽为多少米?

manfen5.com 满分网 查看答案
已知,如图:△ABC中,CH是高,∠ACH=2∠ABC,点O是AB上一点,以点O为圆心,OB为半径的⊙O经过点C,
(1)求证:AC是⊙O的切线;
(2)连接CO并延长交⊙0于点D,连接BD并延长与∠DCH的平分线CE相交于点E,若⊙O的半径为5cm,CH=4cm,求线段CE的长.
manfen5.com 满分网
查看答案
经过某十字路口的汽车,它可能继续直行,也可能向左或向右转,如果这三种可能性的大小相同.三辆汽车经过这个十字路口,(画树状图)求下列事件的概率:
(1)三辆汽车继续直行的概率;
(2)两辆车向右转,一辆车向左转的概率;
(3)至少有两辆车向左转的概率.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,将凹四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B(l,3),C(3,3),D(3,1).
(1)画出“基本图形”关于原点O对称的凹四边形A1BlClDi,并写出A1,B1,C1,D1的坐标.A1____________),Bi____________),Cl____________),D1____________);
(2)画出“基本图形”关于x轴的对称凹四边形A2B2C2D2
(3)将“基本图形”绕着原点O逆时针旋转90°画出对应凹四边形A2B2C2D2,回答你画的三个图形与原“基本图形”组成的整体图案是中心对称图形还是轴对称图形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.