满分5 > 初中数学试题 >

如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+b...

如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.
(1)求二次函数y=ax2+bx+c的解析式;
(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.

manfen5.com 满分网
(1)根据y=0.5x+2交x轴于点A,与y轴交于点B,即可得出A,B两点坐标,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.得出可设二次函数y=ax2+bx+c=a(x-2)2,进而求出即可; (2)根据当B为直角顶点,当D为直角顶点,以及当P为直角顶点时,分别利用三角形相似对应边成比例求出即可. 【解析】 (1)∵y=0.5x+2交x轴于点A, ∴0=0.5x+2, ∴x=-4, 与y轴交于点B, ∵x=0, ∴y=2 ∴B点坐标为:(0,2), ∴A(-4,0),B(0,2), ∵二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2 ∴可设二次函数y=a(x-2)2, 把B(0,2)代入得:a=0.5 ∴二次函数的解析式:y=0.5x2-2x+2; (2)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点 由Rt△AOB∽Rt△BOP1 ∴=, ∴=, 得:OP1=1, ∴P1(1,0), (Ⅱ)作P2D⊥BD,连接BP2, 将y=0.5x+2与y=0.5x2-2x+2联立求出两函数交点坐标: D点坐标为:(5,4.5), 则AD=, 当D为直角顶点时 ∵∠DAP2=∠BAO,∠BOA=∠ADP2, ∴△ABO∽△AP2D, ∴=, =, 解得:AP2=11.25, 则OP2=11.25-4=7.25, 故P2点坐标为(7.25,0); (Ⅲ)当P为直角顶点时,过点D作DE⊥x轴于点E,设P3(a,0) 则由Rt△OBP3∽Rt△EP3D 得:, ∴, ∵方程无解, ∴点P3不存在, ∴点P的坐标为:P1(1,0)和P2(7.25,0).
复制答案
考点分析:
相关试题推荐
如图,已知矩形ABCD中,BC=6,AB=8,延长AD到点E,使AE=15,连接BE交AC于点P.
(1)求AP的长;
(2)若以点A为圆心,AP为半径作⊙A,试判断线段BE与⊙A的位置关系并说明理由;
(3)已知以点A为圆心,r1为半径的动⊙A,使点D在动⊙A的内部,点B在动⊙A的外部.
①求动⊙A的半径r1的取值范围;
②若以点C为圆心,r2为半径的动⊙C与动⊙A相切,求r2的取值范围.

manfen5.com 满分网 查看答案
阅读以下材料:
若关于x的三次方程x3+ax2+bx+c=0(a、b、c为整数)有整数解n,则将n代入方程x3+ax2+bx+c=0得:n3+an2+bn+c=0
∴c=-n3-an2-bn=-n(n2+an+b)
∵a、b、n都是整数∴n2+an+b是整数∴n是c的因数.
上述过程说明:整数系数方程x3+ax2+bx+c=0的整数解n只能是常数项c的因数.
如:∵方程x3+4x2+3x-2=0中常数项-2的因数为:±1和±2,
∴将±1和±2分别代入方程x3+4x2+3x-2=0得:x=-2是该方程的整数解,-1、1、2不是方程的整数解.
解决下列问题:
(1)根据上面的学习,方程x3+2x2+6x+5=0的整数解可能______
(2)方程-2x3+4x2+12x-14=0有整数解吗?若有,求出整数解;若没有,说明理由.
查看答案
已知关于x的一元二次方程x2-6x+k=0有两个实数根.
(1)求k的取值范围;
(2)如果k取符合条件的最大整数,且一元二次方程x2-6x+k=0与x2+mx-1=0有一个相同的根,求常数m的值.
查看答案
如图,矩形纸片ABCD中AB=6cm,BC=10cm,小明同学先折出矩形纸片ABCD的对角线AC,再分别把△ABC、△ADC沿对角线AC翻折交AD、BC于点F、E.
(1)判断小明所折出的四边形AECF的形状,并说明理由;
(2)求四边形AECF的面积.

manfen5.com 满分网 查看答案
(1)若五个数据2,-1,3,x,5的极差为8,求x的值;
(2)已知六个数据-3,-2,1,3,6,x的中位数为1,求这组数据的方差.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.