满分5 > 初中数学试题 >

Rt△ABC中,∠C=90°,若直角边AC=5,BC=12,则此三角形的内切圆半...

Rt△ABC中,∠C=90°,若直角边AC=5,BC=12,则此三角形的内切圆半径为   
设AB、BC、AC与⊙O的切点分别为D、F、E;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=(AC+BC-AB),由此可求出r的长. 【解析】 如图; 在Rt△ABC,∠C=90°,AC=5,BC=12; 根据勾股定理AB==13; 四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°; ∴四边形OECF是正方形; 由切线长定理,得:AD=AE,BD=BF,CE=CF; ∴CE=CF=(AC+BC-AB); 即:r=(5+12-13)=2. 故答案为:2.
复制答案
考点分析:
相关试题推荐
关于x的一元二次方程(m-2)x2+3x+m2-4=0有一个解是0,则m=    查看答案
已知⊙O上有两点A、B,且圆心角∠AOB=40°,则劣弧AB的度数为    °. 查看答案
如图,在Rt△ABC中,∠B=90°,BC=5manfen5.com 满分网,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.

manfen5.com 满分网 查看答案
以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
①试用含α的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由.
manfen5.com 满分网
查看答案
如图,一次函数y1=k1x+2与反比例函数manfen5.com 满分网的图象交于点A(4,m)和B(-8,-2),与y轴交于点C.
(1)k1=______,k2=______
(2)根据函数图象可知,当y1>y2时,x的取值范围是______
(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.