计算
的结果是( )
A.2
B.±2
C.-2
D.4
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.
(1)当AD=CD时,求证:DE∥AC;
(2)探究:AD为何值时,△BME与△CNE相似?
查看答案
已知:如图,有一块含30°的直角三角板OAB的直角边长BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把该套三角板放置在平面直角坐标系中,且AB=3.
(1)若双曲线的一个分支恰好经过点A,求双曲线的解析式;
(2)若把含30°的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好与x轴重叠,点A落在点A′,试求图中阴影部分的面积(结果保留π).
查看答案
学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得经验,继续探索两个直角三角形相似的条件.
(1)“对与两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”.类似地你可以得到:“满足______,或______,两个直角三角形相似”.
(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地你可以得到“满足______的两个直角三角形相似”.
请结合下列所给图形,写出已知,并完成说理过程.
已知:如图,______.
试说明Rt△ABC∽Rt△A′B′C′.
查看答案
学校计划用地面砖铺设教学楼前矩形广场的地面ABCD已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.为了美观,要求四角的小正方形的边长不得超过30米.要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?
查看答案
如图,望远镜调好后,摆放在水平地面上.观测者用望远镜观测物体时,眼睛(在A点)到水平地面的距离AD=141cm,沿AB方向观测物体的仰角α=33°,望远镜前端(B点)与眼睛(A点)之间的距离AB=153cm,求点B到水平地面的距离BC的长(精确到0.1cm,参考数据:sin33°=0.54,cos33°=0.84,tan33°=0.65).
查看答案