满分5 > 初中数学试题 >

如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA...

如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD交PB的延长线于D点.
(1)求证:AC•CD=PC•BC;
(2)当点P运动到AB弧中点时,求CD的长;
(3)当点P运动到什么位置时,△PCD的面积最大?并求这个最大面积S.

manfen5.com 满分网
(1)由圆周角定理知∠A=∠P,而∠ACB=∠PCD=90°,故有△ABC∽△PCD⇒⇒AC•CD=PC•BC; (2)当点P运动到AB弧中点时,过点B作BE⊥PC于点E.由题意知∠PCB=45°,CE=BE,而又∠CAB=∠CPB,得tan∠CPB=tan∠CAB=.代入数值可求得PE的值,从而PC=PE+EC,由(1)知CD=PC,即可求出; (3)由题意知,S△PCD=PC•CD.由(1)可知,CD=PC.有S△PCD=PC2.故PC最大时,S△PCD取得最大值;而PC为直径时最大,故可求解. (1)证明:∵AB为直径, ∴∠ACB=90°. 又∵PC⊥CD, ∴∠PCD=90°. 而∠CAB=∠CPD, ∴△ABC∽△PDC. ∴. ∴AC•CD=PC•BC;(3分) (2)【解析】 当点P运动到AB弧中点时,过点B作BE⊥PC于点E. ∵AB为直径,AB=5,BC:CA=4:3, ∴BC=4. ∵P是的中点, ∴∠PCB=45°, ∴CE=BE=BC=2. 又∠CAB=∠CPB, ∴tan∠CPB=tan∠CAB=. ∴PE===. 从而PC=PE+EC=, 由(1)得CD=PC=(7分) (3)【解析】 当点P在AB上运动时,S△PCD=PC•CD.由(1)可知,CD=PC. ∴S△PCD=CD×PC=×PC×PC=PC2.故PC最大时,S△PCD取得最大值; 而PC为直径时最大, ∴S△PCD的最大值S=×52=.(10分)
复制答案
考点分析:
相关试题推荐
某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.
(1)求甲、乙两工程队单独完成此项工程各需要多少天?
(2)若甲工程队独做a天后,再由甲、乙两工程队合作______天(用含a的代数式表示)可完成此项工程;
(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?
查看答案
已知关于x的方程x2-2(k-3)x+k2-4k-1=0.
(1)若这个方程有实数根,求k的取值范围;
(2)若这个方程有一个根为1,求k的值;
(3)若以方程x2-2(k-3)x+k2-4k-1=0的两个根为横坐标、纵坐标的点恰在反比例函数manfen5.com 满分网的图象上,求满足条件的m的最小值.
查看答案
已知:如图,在△ABC中,D是AB边上一点,⊙O过D、B、C三点,∠DOC=2∠ACD=90°.
(1)求证:直线AC是⊙O的切线;
(2)如果∠ACB=75°,⊙O的半径为4,求BD的长.

manfen5.com 满分网 查看答案
已知x1,x2是方程x2-2x+a=0的两个实数根,且x1+2x2=3-manfen5.com 满分网
(1)求x1,x2及a的值;
(2)求x13-3x12+2x1+x2的值.
查看答案
先化简manfen5.com 满分网,然后从manfen5.com 满分网中选取一个你认为合适的数作为x的值代入求值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.