满分5 > 初中数学试题 >

如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0)...

如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=-manfen5.com 满分网x2+bx+c经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线y=-manfen5.com 满分网x2+bx+c的对称轴l上若存在点F,使△FDQ为直角三角形?若存在,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.
manfen5.com 满分网
(1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式; (2)①先用m 表示出QE的长度,进而求出三角形的面积S关于m的函数,化简为顶点式,便可求出S的最大值; ②直接写出满足条件的F点的坐标即可,注意不要漏写. 【解析】 (1)将A、C两点坐标代入抛物线y=-x2+bx+c, , 解得, ∴抛物线的解析式为y=-x2+x+8; (2)①∵OA=8,OC=6 ∴AC==10, 过点Q作QE⊥BC与E点,则sin∠ACB===, ∴=, ∴QE=(10-m), ∴S=•CP•QE=m×(10-m)=-m2+3m=-(m-5)2+, ∴当m=5时,S取最大值; ②在抛物线对称轴l上存在点F,使△FDQ为直角三角形, ∵抛物线的解析式为y=-x2+x+8的对称轴为x=, D的坐标为(3,8),Q(3,4), 当∠FDQ=90°时,F1(,8), 当∠FQD=90°时,则F2(,4), 当∠DFQ=90°时,设F(,n), 则FD2+FQ2=DQ2, 即+(8-n)2++(n-4)2=16, 解得:n=6±, ∴F3(,6+),F4(,6-), 满足条件的点F共有四个,坐标分别为 F1(,8),F2(,4),F3(,6+),F4(,6-).
复制答案
考点分析:
相关试题推荐
王强、张华用4个乒乓球做游戏,这些乒乓球上分别标有数字2,3,6,6(乒乓球的形状、大小、质量相同),他俩将乒乓球放入盒内搅匀后,王强先摸,摸出后不放回,张华再摸.
(1)请你用树状图或列表分析,求出张华摸到标有数字3的乒乓球的概率;
(2)他俩约定:若王强摸到的球面数字比张华的大,则王强赢;若王强摸到的球面数字不大于张华的,则张华赢.你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请你制定得分规则,使游戏变得公平.
manfen5.com 满分网
查看答案
某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价0.5元,其销量就减少10件.
(1)要使每天获得利润700元,请你帮忙确定售价;
(2)问售价定在多少时能使每天获得的利润最多?并求出最大利润.
查看答案
如图,河对岸有一铁塔AB.在C处测得塔顶A的仰角为30°,向塔前进16米到达D,在D处测得A的仰角为45°,求铁塔AB的高.

manfen5.com 满分网 查看答案
如图,在▱ABCD中,BC=2AB,E为BC的中点,试说明AE⊥DE.

manfen5.com 满分网 查看答案
如图,在△ABC中,∠C=90°,∠ABC=30°,AC=m,延长CB至点D,使BD=AB.
①求∠D的度数;
②求tan75°的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.