连接OE、OD,根据AC、BC分别切圆O于E、D,得到∠OEC=∠ODC=∠C=90°,证出正方形OECD,设圆O的半径是r,证△ODB∽△AEO,得出=,代入即可求出r=;设圆的半径是x,圆切AC于E,切BC于D,且AB于F,同样得到正方形OECD,根据a-x+b-x=c,求出x即可;设圆切AB于F,圆的半径是y,连接OF,则△BCA∽△OFA得出=,代入求出y即可.
【解析】
A、设圆的半径是x,圆切AC于E,切BC于D,切AB于F,如图(1)同样得到正方形OECD,AE=AF,BD=BF,则a-x+b-x=c,求出x=,故本选项错误;
B、设圆切AB于F,圆的半径是y,连接OF,如图(2),
则△BCA∽△OFA,∴=,
∴=,解得:y=,故本选项错误;
C、连接OE、OD,
∵AC、BC分别切圆O于E、D,
∴∠OEC=∠ODC=∠C=90°,
∵OE=OD,
∴四边形OECD是正方形,
∴OE=EC=CD=OD,
设圆O的半径是r,
∵OE∥BC,∴∠AOE=∠B,
∵∠AEO=∠ODB,
∴△ODB∽△AEO,
∴=,
=,
解得:r=,故本选项正确;
D、O点连接三个切点,从上至下一次为:OD,OE,OF;并设圆的半径为x;
容易知道BD=BF,所以AD=BD-BA=BF-BA=a+x-c;
又∵b-x=AE=AD=a+x-c;所以x=,故本选项错误.
故选C.