满分5 > 初中数学试题 >

已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+b...

已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点manfen5.com 满分网A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.
(1)通过解方程即可求出m、n的值,那么A、B两点的坐标就可求出.然后根据A、B两点的坐标即可求出抛物线的解析式. (2)根据(1)得出的抛物线的解析式即可求出C、D两点的坐标. 由于△BCD的面积无法直接求出,可用其他图形的面积的“和,差关系”来求出.过D作DM⊥x轴于M,那么△BCD的面积=梯形DMOB的面积+△DCM的面积-△BOC的面积.由此可求出△BCD的面积. (3)由于△PCH被直线BC分成的两个小三角形等高,因此面积比就等于底边的比.如果设PH与BC的交点为E,那么EH就是抛物线与直线BC的函数值的差,而EP就是E点的纵坐标.然后可根据直线BC的解析式设出E点的坐标,然后表示出EH,EP的长.进而可分两种情况进行讨论:①当EH=EP时;②当EH=EP时.由此可得出两个不同的关于E点横坐标的方程即可求出E点的坐标.也就求出了P点的坐标. 【解析】 (1)解方程x2-6x+5=0, 得x1=5,x2=1 由m<n,有m=1,n=5 所以点A、B的坐标分别为A(1,0),B(0,5). 将A(1,0),B(0,5)的坐标分别代入y=-x2+bx+c. 得 解这个方程组,得 所以,抛物线的解析式为y=-x2-4x+5 (2)由y=-x2-4x+5,令y=0,得-x2-4x+5=0 解这个方程,得x1=-5,x2=1 所以C点的坐标为(-5,0).由顶点坐标公式计算,得点D(-2,9). 过D作x轴的垂线交x轴于M. 则S△DMC=×9×(5-2)= S梯形MDBO=×2×(9+5)=14, S△BOC=×5×5= 所以,S△BCD=S梯形MDBO+S△DMC-S△BOC=14+-=15. 答:点C、D的坐标和△BCD的面积分别是:(-5,0)、(-2,9)、15; (3)设P点的坐标为(a,0) 因为线段BC过B、C两点, 所以BC所在的直线方程为y=x+5. 那么,PH与直线BC的交点坐标为E(a,a+5), PH与抛物线y=-x2-4x+5的交点坐标为H(a,-a2-4a+5). 由题意,得①EH=EP, 即(-a2-4a+5)-(a+5)=(a+5) 解这个方程,得a=-或a=-5(舍去) ②EH=EP,即(-a2-4a+5)-(a+5)=(a+5) 解这个方程,得a=-或a=-5(舍去), P点的坐标为(-,0)或(-,0).
复制答案
考点分析:
相关试题推荐
如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.manfen5.com 满分网
(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行),试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?
查看答案
我州有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.
(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.
(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.
(3)李经理将这批野生茵存放多少天后出售可获得最大利润W元?
(利润=销售总额-收购成本-各种费用)
查看答案
某农户计划利用现有的一面墙再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5m、长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度)
(1)若想水池的总容积为36m3,x应等于多少?
(2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围;
(3)若想使水池的总容积V最大,x应为多少?最大容积是多少?

manfen5.com 满分网 查看答案
已知:在△ABC中,BC=20,高AD=16,内接矩形EFGH的顶点E、F在BC上,G、H分别在AC、AB上,求内接矩形EFGH的最大面积.

manfen5.com 满分网 查看答案
已知二次函数y=-x2+4x.
(1)用配方法把该函数化为y=a(x-h)2+k(其中a、h、k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶点坐标;
(2)函数图象与x轴的交点坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.