满分5 > 初中数学试题 >

如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点...

如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连接CF.
(1)当∠AOB=30°时,求弧AB的长度;
(2)当DE=8时,求线段EF的长;
(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似?若存在,请求出此时点E的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)连接BC,由已知得∠ACB=2∠AOB=60°,AC=AO=5,根据弧长公式求解; (2)连接OD,由垂直平分线的性质得OD=OA=10,又DE=8,在Rt△ODE中,由勾股定理求OE,依题意证明△OEF∽△DEA,利用相似比求EF; (3)存在.当以点E、C、F为顶点的三角形与△AOB相似时,分为①当交点E在O,C之间时,由以点E、C、F为顶点的三角形与△AOB相似,有∠ECF=∠BOA或∠ECF=∠OAB,②当交点E在点C的右侧时,要使△ECF与△BAO相似,只能使∠ECF=∠BAO,③当交点E在点O的左侧时,要使△ECF与△BAO相似,只能使∠ECF=∠BAO,三种情况,分别求E点坐标. 【解析】 (1)连接BC, ∵A(10,0),∴OA=10,CA=5, ∵∠AOB=30°, ∴∠ACB=2∠AOB=60°, ∴弧AB的长=;(4分) (2)①若D在第一象限, 连接OD, ∵OA是⊙C直径, ∴∠OBA=90°, 又∵AB=BD, ∴OB是AD的垂直平分线, ∴OD=OA=10, 在Rt△ODE中, OE==, ∴AE=AO-OE=10-6=4, 由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA, 得△OEF∽△DEA, ∴,即, ∴EF=3;(4分) ②若D在第二象限, 连接OD, ∵OA是⊙C直径, ∴∠OBA=90°, 又∵AB=BD, ∴OB是AD的垂直平分线, ∴OD=OA=10, 在Rt△ODE中, OE==, ∴AE=AO+OE=10+6=16, 由∠AOB=∠ADE=90°-∠OAB,∠OEF=∠DEA, 得△OEF∽△DEA, ∴,即=, ∴EF=12; ∴EF=3或12; (3)设OE=x, ①当交点E在O,C之间时,由以点E、C、F为顶点的三角 形与△AOB相似,有∠ECF=∠BOA或∠ECF=∠OAB, 当∠ECF=∠BOA时,此时△OCF为等腰三角形,点E为OC 中点,即OE=, ∴E1(,0); 当∠ECF=∠OAB时,有CE=5-x,AE=10-x, ∴CF∥AB,有CF=, ∵△ECF∽△EAD, ∴,即,解得:, ∴E2(,0); ②当交点E在点C的右侧时, ∵∠ECF>∠BOA, ∴要使△ECF与△BAO相似,只能使∠ECF=∠BAO, 连接BE, ∵BE为Rt△ADE斜边上的中线, ∴BE=AB=BD, ∴∠BEA=∠BAO, ∴∠BEA=∠ECF, ∴CF∥BE, ∴, ∵∠ECF=∠BAO,∠FEC=∠DEA=90°, ∴△CEF∽△AED, ∴, 而AD=2BE, ∴, 即,解得,<0(舍去), ∴E3(,0); ③当交点E在点O的左侧时, ∵∠BOA=∠EOF>∠ECF. ∴要使△ECF与△BAO相似,只能使∠ECF=∠BAO 连接BE,得BE==AB,∠BEA=∠BAO ∴∠ECF=∠BEA, ∴CF∥BE, ∴, 又∵∠ECF=∠BAO,∠FEC=∠DEA=90°, ∴△CEF∽△AED, ∴, 而AD=2BE, ∴, ∴, 解得x1=,x2=, ∵点E在x轴负半轴上, ∴E4(,0), 综上所述:存在以点E、C、F为顶点的三角形与△AOB相似, 此时点E坐标为:E1(,0)、E2(,0)、E3(,0)、E4(,0).(4分)
复制答案
考点分析:
相关试题推荐
我州有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.
(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.
(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.
(3)李经理将这批野生茵存放多少天后出售可获得最大利润W元?
(利润=销售总额-收购成本-各种费用)
查看答案
如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.
(1)试判断DE与BD是否相等,并说明理由;
(2)如果BC=6,AB=5,求BE的长.

manfen5.com 满分网 查看答案
一座拱型桥,桥下水面宽度AB是20米,拱高CD是4米.若水面上升3米至EF,则水面宽度EF是多少?
(1)若把它看作是抛物线的一部分,在坐标系中(如图1)可设抛物线的表达式为y=ax2+c.请你填空:
a=______,c=______,EF=______米.
(2)若把它看作是圆的一部分,则可构造图形(如图2)计算如下:
设圆的半径是r米,在Rt△OCB中,易知r2=(r-4)2+102,r=14.5
同理,当水面上升3米至EF,在Rt△OGF中可计算出GF=______
查看答案
如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,C是圆上一点,连接AC,BC,OA,OB,∠AOE=60°,且OD=4.
(1)求∠ACB的度数.
(2)求AB的长.

manfen5.com 满分网 查看答案
如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.