满分5 > 初中数学试题 >

如图,已知O(0,0)、A(4,0)、B(4,3).动点P从O点出发,以每秒3个...

如图,已知O(0,0)、A(4,0)、B(4,3).动点P从O点出发,以每秒3个单位的速度,沿△OAB的边0A、AB、B0作匀速运动;动直线l从AB位置出发,以每秒1个单位的速度向x轴负方向作匀速平移运动.若它们同时出发,运动的时间为t秒,当点P运动到O时,它们都停止运动.
(1)当P在线段OA上运动时,求直线l与以P为圆心、1为半径的圆相交时t的取值范围;
(2)当P在线段AB上运动时,设直线l分别与OA、OB交于C、D,试问:四边形CPBD是否可能为菱形?若能,求出此时t的值;若不能,请说明理由,并说明如何改变直线l的出发时间,使得四边形CPBD会是菱形.

manfen5.com 满分网
(1)根据点P与直线l的距离d<1分为点P在直线l的左边和右边,分别表示距离,列不等式组求范围; (2)四边形CPBD不可能为菱形.依题意可得AC=t,OC=4-t,PA=3t-4,PB=7-3t,由CD∥AB,利用相似比表示CD,由菱形的性质得CD=PB可求t的值,又当四边形CPBD为菱形时,PC=PB=7-3t,把t代入PA2+AC2,PC2中,看结果是否相等如果结果不相等,就不能构成菱形.设直线l比P点迟a秒出发,则AC=t-a,OC=4-t+a,再利用平行线表示CD,根据CD=PB,PC∥OB,得相似比,分别表示t,列方程求a即可. 【解析】 (1)当P在线段OA上运动时,OP=3t,AC=t, ⊙P与直线l相交时,, 解得<t<; (2)四边形CPBD不可能为菱形. 依题意,得AC=t,OC=4-t,PA=3t-4,PB=7-3t, ∵CD∥AB, ∴=,即=, 解得CD=(4-t), 由菱形的性质,得CD=PB, 即(4-t)=7-3t, 解得t=, 又当四边形CPBD为菱形时,PC=PB=7-3t,当t=时, 代入PA2+AC2=(3t-4)2+t2=,PC2=(7-3t)2=, ∴PA2+AC2≠PC2,就不能构成菱形. 设直线l比P点迟a秒出发,则AC=t-a,OC=4-t+a, 由CD∥AB,得CD=(4-t+a),由CD=PB,得(4-t+a)=7-3t, 解得t=, PC∥OB,PC=CD,得=,即AB•PC=OB•AP, 3×(4-t+a)=5×(3t-4), 解得t=, 则=, 解得a=,即直线l比P点迟秒出发.
复制答案
考点分析:
相关试题推荐
下图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4).
(1)求出图象与x轴的交点A,B的坐标;
(2)在二次函数的图象上是否存在点P,使S△PAB=manfen5.com 满分网S△MAB?若存在,求出P点的坐标;若不存在,请说明理由;
(3)将二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线y=x+b(b<1)与此图象有两个公共点时,b的取值范围.

manfen5.com 满分网 查看答案
在△ABC中,∠A=90°,点D在线段BC上,∠EDB=manfen5.com 满分网∠C,BE⊥DE,垂足为E,DE与AB相交于点F.
(1)当AB=AC时,(如图1),
①∠EBF=______°;
②探究线段BE与FD的数量关系,并加以证明;
(2)当AB=kAC时(如图2),求manfen5.com 满分网的值(用含k的式子表示).
manfen5.com 满分网
查看答案
如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6,AE=manfen5.com 满分网,求⊙O的半径;
(3)在第(2)小题的条件下,则图中阴影部分的面积为______

manfen5.com 满分网 查看答案
图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形.当点0到BC(或DE)的距离大于或等于的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是manfen5.com 满分网,其余是线段),O是AF的中点,桶口直径AF=34cm,AB=FE=5cm,∠ABC=∠FED=149°.请通过计箅判断这个水桶提手是否合格.
(参考数据:manfen5.com 满分网≈17.72,tan73.6°≈3.40,sin75.4°≈0.97)
manfen5.com 满分网
查看答案
一个小服装厂生产某种风衣,售价P(元/件) 与月销售量x(件)之间的关系为P=160-2x,生产x件的成本R=500+30x元.
(1)该厂的月产量为多大时,获得的月利润为1300元?
(2)当月产量为多少时,可获得最大月利润?最大利润是多少元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.