满分5 > 初中数学试题 >

如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上...

如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
(1)求证:△AMB≌△ENB;
(2)①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
(3)当AM+BM+CM的最小值为manfen5.com 满分网时,求正方形的边长.

manfen5.com 满分网
(1)由题意得MB=NB,∠ABN=15°,所以∠EBN=45°,容易证出△AMB≌△ENB; (2)①根据“两点之间线段最短”,可得,当M点落在BD的中点时,AM+CM的值最小; ②根据“两点之间线段最短”,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长(如图); (3)作辅助线,过E点作EF⊥BC交CB的延长线于F,由题意求出∠EBF=30°,设正方形的边长为x,在Rt△EFC中,根据勾股定理求得正方形的边长为. (1)证明:∵△ABE是等边三角形, ∴BA=BE,∠ABE=60°. ∵∠MBN=60°, ∴∠MBN-∠ABN=∠ABE-∠ABN. 即∠MBA=∠NBE. 又∵MB=NB, ∴△AMB≌△ENB(SAS).(5分) (2)【解析】 ①当M点落在BD的中点时,A、M、C三点共线,AM+CM的值最小.(7分) ②如图,连接CE,当M点位于BD与CE的交点处时, AM+BM+CM的值最小.(9分) 理由如下:连接MN,由(1)知,△AMB≌△ENB, ∴AM=EN, ∵∠MBN=60°,MB=NB, ∴△BMN是等边三角形. ∴BM=MN. ∴AM+BM+CM=EN+MN+CM.(10分) 根据“两点之间线段最短”,得EN+MN+CM=EC最短 ∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.(11分) (3)【解析】 过E点作EF⊥BC交CB的延长线于F, ∴∠EBF=∠ABF-∠ABE=90°-60°=30°. 设正方形的边长为x,则BF=x,EF=. 在Rt△EFC中, ∵EF2+FC2=EC2, ∴()2+(x+x)2=.(12分) 解得,x1=,x2=-(舍去负值). ∴正方形的边长为.(13分)
复制答案
考点分析:
相关试题推荐
已知二次函数y=ax2+bx+c(a≠0)中自变量x和函数值y的部分对应值如下表:
x-3-2-11
y-646
(1)求二次函数解析式,并写出顶点坐标;
(2)在直角坐标系中画出该抛物线的图象
(3)若该抛物线上两点A(x1,y1)、B(x2,y2)的横坐标满足x1<x2<-1,试比较y1与y2的大小.
查看答案
如图,在⊙O内有折线OABC,其中OA=7,AB=12,∠A=∠B=60°,求BC的长.

manfen5.com 满分网 查看答案
已知:如图,在梯形ABCD中,AD∥BC,AB=DC=AD=2,BC=4.求∠B的度数及AC的长.

manfen5.com 满分网 查看答案
化简:manfen5.com 满分网
查看答案
解方程:x2-4x-1=0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.