满分5 > 初中数学试题 >

如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交...

如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.
(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;
(3)若AB=8cm,BC=10cm,求大圆与小圆围成的圆环的面积.(结果保留π)

manfen5.com 满分网
(1)只要证明OE垂直BC即可得出BC是小圆的切线,即与小圆的关系是相切. (2)利用全等三角形的判定得出Rt△OAD≌Rt△OEB,从而得出EB=AD,从而得到三者的关系是前两者的和等于第三者. (3)根据大圆的面积减去小圆的面积即可得到圆环的面积. 【解析】 (1)BC所在直线与小圆相切. 理由如下: 过圆心O作OE⊥BC,垂足为E; ∵AC是小圆的切线,AB经过圆心O, ∴OA⊥AC; 又∵CO平分∠ACB,OE⊥BC, ∴OE=OA, ∴BC所在直线是小圆的切线. (2)AC+AD=BC. 理由如下: 连接OD. ∵AC切小圆O于点A,BC切小圆O于点E, ∴CE=CA; ∵在Rt△OAD与Rt△OEB中,, ∴Rt△OAD≌Rt△OEB(HL), ∴EB=AD; ∵BC=CE+EB, ∴BC=AC+AD. (3)∵∠BAC=90°,AB=8cm,BC=10cm, ∴AC=6cm; ∵BC=AC+AD, ∴AD=BC-AC=4cm, ∵圆环的面积为:S=π(OD)2-π(OA)2=π(OD2-OA2), 又∵OD2-OA2=AD2, ∴S=42π=16π(cm2).
复制答案
考点分析:
相关试题推荐
如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.
(1)在如图的坐标系中求抛物线的解析式;
(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?
manfen5.com 满分网
查看答案
某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价(x)定为多少元时,才能使每天所赚的利润(y)最大并求出最大利润.
查看答案
如图,AB是半圆O的直径,CD垂直AB于D,EC是切线,E为切点.
求证:CE=CF.

manfen5.com 满分网 查看答案
小刚想给小东打电话,但忘了电话号码中的一位数字,只记得号码是284□9456(□表示忘记的数字).
(1)若小刚从0至9的自然数中随机选取一个数放在□位置,则他拨对小东电话号码的概率是______
(2)若□位置的数字是不等式组manfen5.com 满分网的整数解,求□可能表示的数字.
查看答案
已知抛物线y=x2-2x-8.
(1)试说明该抛物线与x轴一定有两个交点.
(2)若该抛物线与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.