满分5 > 初中数学试题 >

如图,将腰长为的等腰Rt△ABC(∠C是直角)放在平面直角坐标系中的第二象限,其...

如图,将腰长为manfen5.com 满分网的等腰Rt△ABC(∠C是直角)放在平面直角坐标系中的第二象限,其中点A在y轴上,点B在抛物线y=ax2+ax-2上,点C的坐标为(-1,0).
(1)点A的坐标为______,点B的坐标为______
(2)抛物线的关系式为______,其顶点坐标为______
(3)将三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C′的位置.请判断点B′、C′是否在(2)中的抛物线上,并说明理由.

manfen5.com 满分网
(1)在Rt△AOC中,已知了斜边CA和直角边OC的长,利用勾股定理即可求得OA的值,从而得到点A的坐标;过B作BE⊥x轴于E,由于△ABC是等腰直角三角形,易证得△BCE≌△CAO,可得BC=OA、BE=OC,由此可求得点B的坐标. (2)将点B的坐标代入抛物线的解析式中,即可求得待定系数的值,从而确定该抛物线的解析式. (3)解决此题首先要求出B′、C′的坐标,可仿照(1)的方法求解;过B作BN⊥y轴于N,过B′作B′M⊥y轴于M,可通过证△ABN≌△AB′M,来求得AM、B′M的长,进而确定出点B′的坐标;C′坐标的求法相同,过C′作C′P⊥y轴于P,通过证△AOC≌△APC′,来求得点C′的坐标,进而可将B′、C′的坐标代入抛物线的解析式中进行验证即可. 【解析】 (1)过B作BE⊥x轴于E; 在Rt△AOC中,AC=,OC=1,则OA=2; 故A(0,2); 由于△ACB是等腰直角三角形,则AC=BC,∠ACB=90°; ∴∠BCE=∠CAO=90°-∠ACO, ∴△BCE≌△CAO, 则CE=OA=2,BE=CO=1, 故B(-3,1); ∴A(0,2),B(-3,1).(2分) (2)由于抛物线经过点B(-3,1),则有: 9a-3a-2=1,a=; ∴解析式为y=;(3分) 由于y==, 故抛物线的顶点为(-).(4分) (3)如图,过点B′作B′M⊥y轴于点M,过点B作BN⊥y轴于点N,过点C′作CP⊥y轴于点P; 在Rt△AB′M与Rt△BAN中, ∵AB=AB′,∠AB′M=∠BAN=90°-∠B′AM, ∴Rt△AB′M≌Rt△BAN. ∴B′M=AN=1,AM=BN=3, ∴B′(1,-1); 同理△AC′P≌△CAO,C′P=OA=2,AP=OC=1, 可得点C′(2,1); 将点B′、C′的坐标代入y=, 可知点B′、C′在抛物线上.(7分) (事实上,点P与点N重合)
复制答案
考点分析:
相关试题推荐
如图,等腰三角形ABC中,AC=BC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求sin∠E的值.

manfen5.com 满分网 查看答案
观察与思考:阅读下列材料,并解决后面的问题.
在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作 AD⊥BC于D(如图1),则sinB=manfen5.com 满分网,sinC=manfen5.com 满分网,即AD=csinB,AD=bsinC,于是csinB=bsinC,即manfen5.com 满分网.同理有:manfen5.com 满分网manfen5.com 满分网,所以manfen5.com 满分网
即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.
(1)如图2,△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=______;AC=______
查看答案
(1)计算:manfen5.com 满分网+(-1)2009+(π-2)
(2)解方程:x2-4x=2496.
查看答案
如图,矩形纸片ABCD,点E是AB上一点,且BE:EA=5:3,EC=manfen5.com 满分网,把△BCE沿折痕EC向上翻折,若点B恰好落在AD边上,设这个点为F,若⊙O内切于以F、E、B、C为顶点的四边形,则⊙O的面积=   
manfen5.com 满分网 查看答案
在Rt△ABC中,∠C=90°,AC=3,BC=4.若以C点为圆心,r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.